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Abstract 

The transmission of digital information by means of electromagnetic wave propa- 
gation between terminals is reconsidered in order to understand the influence of the 
radiation channel, including the terminal antennas, on the quality of communication 
that can be maintained. In particular, we investigate the potential to improve perfor- 
mance by modulating the messages onto a set of spatially varying patterns across the 
source antenna. 

We show that the radiation channel can be modeled by the parallel combination of 
independent spatially and temporally modulated subchannels when the background noise 
at the receiver has Gaussian statistics and is uncorrelated at points separated by more 
than a few wavelengths of the car r ier  frequency. E r r o r  bounds a r e  evaluated for digi- 
tal  transmission with optimum distribution of signal power to the subchannels. These 
bounds a r e  used to  interpret the significance of the signal and channel parameters and 
the interplay among them. 

The principal conclusion is that spatial modes have the same function as time- 
variant signal modes. They can be viewed a s  independent subchannels that extend the 
effective bandwidth of the communication link. The number of effective spatial modes 
depends on the dimension of the terminal antennas and on the input signal-to-noise 
ratio. For  a significant application of this modulation technique, the receiving antenna 
must be large enough to register simultaneous spatial variations in the incident elec- 
tromagnetic fields. 
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I. INTRODUCTION 

We shall develop performance bounds for  digital communication systems that trans- 

mit information from one point to another by means of electromagnetic wave propagation. 

W e  focus attention on the influence of the radiation channel, including the terminal 

antennas, on the quality of communication that can be established. We give special 

attention to modeling the channel for this communications analysis. 

Figure 1 is a block diagram of a communication system with the following 

components: 

1. Message Source. This produces one of M equally likely messages in each 

T-second time interval. We have chosen to work with the class of time-discrete and 

amplitude-dis crete sources. 

2. Data Processor. This transforms sequences of messages into a coded format 

especially designed for reliable transmission. 

3 .  Modulator. This assigns a signal j(F, t )  to each of the coder outputs for trans- 

mission over the transmitting antenna. 

4. Antenna System. This system comprises transmitting and receiving antennas 

and the intervening free-space propagation path, including additive noise sources. 

5. Demodulator. This maps each received signal o(>, t )  into a set of decision 

variables. 

6. Decoder. This processes the demodulator output to provide a sequence of 

messages to the User. 

We a r e  especially concerned with items 3 ,  4, and 5 in this chain and, in particular, 

with optimizing system performance by appropriate selection of the transmitted signals 

j ,  t ) .  In conventional radiating systems waveforms a r e  distinguished only on the basis 
of temporal variation of their characteristics, such a s  amplitude, phase, and frequency. 

The antenna system is modeled by an attenuator that influences the system reliability 

only by scaling the received signal-to-noise ratio (SNR). In contrast, we investigate 

the consequences of modulating with both temporal and spatial variations of the "complex 

amplitude" of the signal illumination across the antenna aperture. 

The problem that we pose here is essentially independent of the radiation frequency. 

There is no benefit, however, from spatial modulation when the transmitting antenna 

looks like an unresolvable point source to the receiver. Thus, application of our 

results in microwave communications is unlikely because conventional antennas 

operating at microwave frequencies a r e  too small to sense spatial variations of the 

intensity of the input signal over their surface areas. Application to optical communi- 

cation systems looks promising for two reasons: ( i )  antennas (lenses) that a r e  very 
4 large compared with wavelength of optical signals (a  factor of 10 o r  higher) can be 

easily fabricated; and (ii) there may be useful applications of optical technology to 

communication over distances of a few tens of miles o r  less .  Although the analysis 

shows that the greatest benefits a r e  to be expected at optical frequencies, it is useful 
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Fig. 1. Model of a communication system. 

to have analytical results that confirm our intuition about the situation at lower 

frequencies. 
1 

Twenty years ago, Shannon showed that for channels with additive Gaussian noise, 

there is a maximum information transmission rate called the "channel capacityt' 

(bits/second) such that discrete bits of information can be transmitted with vanishingly 

small probability of e r ro r  at all rates l e s s  than capacity. Subsequently, this theorem 

has been generalized, and estimates on the rate at which the e r ro r  probability decreases 

to zero have been ~ h a r ~ e n e d . ~ - ~  Our analysis is essentially an extension of the class of 

channels to which Shannon's theory of information transmission has been applied. We 

shall evaluate the ttchannel capacity" and the "rate-reliability" function that obtains 

when antennas having fixed physical dimensions a r e  driven by the best possible spatially 

and temporally modulated signals. The detailed structure of these optimum signals will 

vary with the source information rate, the antenna system geometry, and the available 

signal energy and the characteristics of associated noise sources. We shall show that 

the influence of the antenna system is abstracted by a single gross parameter 

where A1 and A2 a re  the areas  of the transmitting and receiving antennas, respec- 

tively; Z is the separation between antennas, and X is the radiation wavelength. The 

larger  D is,  the more communications can be improved by use of spatial modu- 

rnodu lator - 

lation. 

- 
data processor - 



1 .1  BACKGROUND 

The specific extension of coding theory to the analysis of spatially modulated signals 

appears to be novel. There are, however, significant mathematical roots to this work 

both in coding theory and in optics. 

During the twenty years  since Shannon's original paper on random coding, there have 

been many refinements of his results. Several authors, following Shannon, have shown 

that for each pair of fil ter channel impulse response and additive Gaussian noise power 

density spectrum there is an optimum set of average power-limited message wave- 

forms. 6-7 For  the optimum signal set the average probability of receiving a message 

in e r ro r  is bounded by expressions of the form 

where R is the information rate per channel use (relative to capacity), and N is the 

number of channel uses per  message. The exponential te rms dominate these bounds for 

low e r r o r  probability; therefore, EL(R) and E (R) a r e  used for comparing communica- u 
tion systems. They a r e  called the "rate-reliability" functions. We compute EU(R) for 

the optical channel in Section 111. 

Holsinger and Ebert have extended these basic results. ~ o l s i n ~ e r ~  observed that 

there is a unique set of orthogonal functions that a r e  complete for representing signals 

at the input to a filter channel and transform into an orthogonal set at the channel output, 

although their functional dependence on time is altered. This result is used to repre- 
9 sent the filter channel by the parallel combination of independent channels. Ebert has 

studied the problem of optimum coding for such parallel channel combinations, and his 

results summarize the tightest available exponential bounds to the probability of er ror .  

The particular integral equation whose solutions a r e  the set of orthogonal basis func- 

tions we use to model the radiation channel has been studied extensively by Slepian and 

~ o l l a k .  We draw heavily on their analysis for  numerical computation and qualitative 

discussion of our results. 

The representation of signals that propagate through f ree  space is fundamental to 

the wave theory of optical instruments. Gabor has stated most clearly the classical 

answer to the number of degrees of freedom available from an optical instrument. 
11 

This number is also the antenna parameter D, but we must distinguish between the 

premises of communication system design and design of optical instruments to properly 

interpret the result. Keeping this distinction in mind, we shall discuss several related 

topics in optical theory and antenna theory. 

1 . 2  SUMMARY OF THE REPORT 

The central analysis of this research is reported in Sections 11, 111, and IV, with sup- 

porting material in three appendices. In Section I1 the concept of the radiation "channel'" 

having a linear time-invariant impulse response is developed. The transmitting and 



receiving antennas a r e  seen to perform operations analogous to  time-limiting and 

bandwidth-limiting, respectively. The integral equation whose solutions a r e  the opti- 

mum se t  of orthogonal channel input waveforms i s  derived, and explicit solutions a r e  

given fo r  one case of particular interest. In the r e s t  of Section I1 the concept of "degrees 

of freedom" for  the optical channel is introduced, and estimates of this number a r e  

included fo r  several  applications. 

Section I11 details the steps for modeling the radiation channel for  a communication 

analysis. This  includes a study of additive noise sources,  signal design, and the design 

of optimum demodulators for coded signaling. The performance of this system with 

the use of optimum modulation is evaluated by computing an upper bound to  the rate- 

reliability function. Specific interpretations of the role of spatial modulation in com- 

munication systems a r e  given. The analysis includes a discussion of the applicability of 

these resul ts  when quantum measurement noise i s  the principal source of message 

distortion. 

In Sections I1 and I11 we develop an approach to optimum processing of spatial infor- 

mation in a noisy environment. In Section IV w e  apply this approach to  some topics 

related to the communication problem. Perhaps the most interesting of these is the 

attempt to predict the dependence of visual acuity on the visual signal-to-noise ratio. 

Section V recapitulates the resul ts  and includes our conclusions. Recommendations 

a r e  made for  extensions of the analysis that has begun here. 



11. NOISE -FREE ANALYSIS 

2.1 ANTENNA INPUT-OUTPUT RELATIONS 

We f i rs t  present a classical evaluation of the electromagnetic field set up by a source 

distribution, discussing certain assumptions and modeling the radiation channel by a lin- 

ea r  filter. The field is represented by solutions to Maxwell's equations with appropriate 

boundary conditions imposed by sources, dielectric boundaries o r  conducting surfaces. 

These solutions a r e  vector fields. We use a reduced, scalar  analysis, because of the 

simple geometry of the radiating systems illustrated in Fig. 2. The components of the 

radiation channel a re  sources, diffracting apertures, and free space. The source is 

modeled by a linearly polarized current sheet, oriented along the x axis in the source 

plane R1. The amplitude of the current density is given by j(p, t ) .  We can also set up 

Backround Noise I I 
Demodulator -+--r-v 

Fig. 2. Model of the antenna system geometry 



an independent field linearly polarized in the y direction. We have assumed that the 

field in the vicinity of the receiving aperture has an essentially plane wave front so that 

field measurements do not significantly couple x and y polarizations. Therefore the 

addition of a second, independently polarized signal field does not ra i se  any new issues 

in  channel modeling that limit the applicability of the sca la r  analysis. 

We apply the Kirchhoff for the field behind a diffracting screen  to 

simplify the analysis. We assume that the field behind an aperture in  the screen  is the 

same a s  the free-space field, and the field on the r e a r  surface of the screen  is zero. 

Although this approximation is mathematically inconsistent, theoretical predictions a r e  

consistent with experimental evidence at optical frequencies. 

2. 1 .  1 Electromagnetic Field in F ree  Space 

An electromagnetic field propagating in f ree  space satisfies Maxwell's equations with 

boundary conditions that characterize the source of the field. We assume that the fields 
4 4 

a r e  narrow-band processes.  Therefore,  an a rb i t ra ry  field vector U(p ,  t )  is written 

where 5 is a unit vector in  the direction of the field, and 

Let E(;, a) and H(;, w) be Fourier  t ransforms of the complex envelopes of the electric 

field and the magnetic field excited by a current source J(;, a) distributed over a finite 

planar input aperture. The field solutions a r e  written in  t e r m s  of spherical coordinates 

(r, 8, +) illustrated by Fig. 3 .  Details of the analysis a r e  presented in  Appendix A. 

Fig. 3 .  Spherical coordinate system. 



The field vectors are  12,13 

t 
1 1 1 J(;, w) eikr + -2 t h ]  sin 9 dv] +2 

sources [S (ikr) ( ~ k r )  

A A k2 t 
H(p, a) = I+ J ~ i ~ u ) e ~ ~ ~ [ & t & ] s i n ~ d ~ ,  

sources 

where X is the wavelength, r is the distance from the point at the source to the 

point i;' in space, and 

8 = azimuthal angle from the-source 
to the observation point p .  

It is shown in Appendix A that the electromagnetic field diffracted by an aperture 

can also be approximated by Eqs. 1 and 2. In this case the source is taken to be the 

field in the aperture, and is assumed not to differ from its free-space value. 

2. 1. 2 Radiation Channel 

Let us continue the analysis, treating the electric field vector arising from a 

current distribution. First ,  simplify Eq. 1 by including only the term that varies 

as  l / r .  

where 

- J (G, w) eikr 
E(P ,U)  =d& 4a J ikr  sin 9 dV. 

sources 

This relationship has the form of a linear operator that transforms J(;, w) into E(;, a). 

We can write this transformation 

sources 



where 

4 d 

h(u, p ) = A& 2iXr sin e ikr 

We can interpret Eq. 4 as  the defining relation for a linear filter whose impulse response 
& d 

is h(u, p ). To proceed, we make the following approximations. Referring to the notation 

of Fig. 2 ,  we set 

z >> (x2ty2) maximum 

sin 8 = 1: in the broadside direction 8 = r / 2 ,  

These approximations are  attributed to ~ r e s n e 1 . l ~  Substituting them in Eq. 4 shows that 

for all points 7; that a re  close to the optical axis (that i s ,  within approximately 18") 

Substituting this approximate value for r in the exponent in (4), and setting r = Z in the 

denominator yields 

e lkZ < J' J(;, w) erp (g [(x-xt 2+ (y-yt l2]) dxdy. lE(;;:w) =- 21XZ (5) 

source plane 

We identify E(;, a) as  the output of a linear, spatially invariant filter that has the 
d 4 

impulse response hk(u, p ). 

where ; and p are  vectors in the input and output apertures, respectively.14 This 

interpretation of (5) is significant because the well-developed techniques of communi- 

cation theory for linear time-invariant channels can now be applied to evaluate the 

ultimate performance of the radiation channel. 
A A 2lrc Now hX(u, p )  is defined at the single frequency w = T. For a general input we 

write 



The effect of this filter on an arbitrary time function is the combination of differentiation, 

C 2zc  i4nz y1 . The highpass (w) variation of 1 h / sec, and scaling by ( 
P 

recalls the familiar result that the apparent beamwidth of an antenna is inversely pro- 

portional to the car r ier  frequency of the transmitted signal. 

2.2 SIGNAL REPRESENTATION 

The transmitted signals that represent the various source messages will be formed 

by taking an appropriately weighted linear sum over a set of waveforms jn(;, t )  having 

the following properties. 

(i) The jn(': t )  a re  a complete orthonormal set over the input aperture. 

(ii) The jn(< t) give r i se  to an orthogonal set of functions on the receiving aperture. 

Orthonormality and completeness at the input ensure a convergent representation 

for arbitrary inputs having finite energy. There a re  many complete orthonormal sets  

on the input aperture. We choose the unique set that transforms into orthogonal signals 

on the output in anticipation of the result that projections of the background noise at 

the receiver onto a set of orthogonal functions are  statistically independent random 

variables. This will be discussed further in Section 111. 

2. 2. 1 Mathematical Analysis for Defining an Optimum Signal Set 

As discussed above we wish to find an orthonormal set of complex functions bn(;, t)}, 

with the following properties: 

i. j (F, t)  is defined on the (x, y) plane, (z = 0), illustrated in Fig. 2, is an arbi- 

t r a r y  vector in the region R1, and t is limited to the interval I tl Q T/2. 

ii. The jn(;, t)  a r e  orthonormal and complete on R1, for 1 t / G T/2. 

iii. Each j n ( z  t) induces an output en(;, t) on the (9, yl)  plane, (z  = Z);  2 is an 

arbi trary vector in the region R2, and t is time-limited to the interval 1 t-tdl G T0/2, 

where td = Z/c (c  being the speed of light in vacuo), and T is an arbitrary duration. 
0 

Most commonly we choose To = T. 

iv. The en(;, t) are  orthogonal on R2 for It-td/ G T0/2 

It is convenient to present the relationship between j (g t) and e (E t )  in te rms of n n 
their Fourier transforms J (< w) and E ( 2 ,  w),  respectively. n n 



By substituting these transform relations in d, we find that the orthogonality condition 

becomes 

Equation 5 gives the following relation between E,(?, w)  and the source distribution 
A 

Jn(r, a): 

Substituting this expression back into the orthogonality conditions leads to the following 

form for a nk' 

Now assume that i w ~ ( r ,  a) exp is the Fourier transform of a time 

function that is zero for 1 t-td( 6 T0/2. Observe that wJ(r, w) is the Fourier transform 
A A 2 of dj (c t)/dt. Therefore the assumption applies whenever max 11 r -rll/ / 2 c ~  G T ~ / Z .  

This condition requires that the received signal be confined within the processing time, 

with variations in delay across the receiver aperture taken into account. In other words, 

it is an intersymbol-interference criterion in systems involving sequential use of the 

channel. Assume that this condition is satisfied, then the integration of t and w2 can 

be easily done, since 

It follows that 



Expand the exponential and regroup terms in the integral. 

Now identify the following functions 

It follows that 

Let us suppose that there a re  real  functions, Jf  (r, w), that a re  orthonormal on R and 

for which 

Let Jk(Fl, a) be a solution to Eq. 8 with the eigenvalue Pk. We shall see that the 

eigenvalues cluster around one and zero with few falling in between. Substitute this 

solution into the expansion for ank. Then 

= 0 otherwise, 



Therefore, our original problem has been reduced to studying a certain linear integral 

equation. Observe that i f  Jf  (% w) satisfies (8), then C(w) J' (c w) also satisfies this eqila- 

tion, a s  long as  the intersymbol-interference condition is satisfied. We now derive a 
useful property of the general solutions. 

2 If J' (F a) satisfies (8), then an input J(;, w) = C(w) Jf (g w) exp[-iw/2cz 11 r I (  ] also 

gives r i se  to an ~(;,w) that satisfies the output orthogonality conditions. Let us check 

for orthogonality at the input. Define the source correlation function b*, by analogy 

to ank. 

Again, observe that i f  jn(;, t)  is essentially time-limited to 1 t 1 6 To/2, then the inte- 

gration on t can be extended to infinity. Then, 

Clearly, the weighting function, Cn(w), can be chosen to ensure that the {Jn(K a)} have 

unit energy if we choose not to normalize the spatially dependent factor. We can con- 

struct a set of orthonormal input functions {Jnl('. a)} for each mode a s  follows. 

where 

= 0 otherwise. 

Therefore, the appropriate expansion functions have a frequency-domain representation 

that is the product of a function of frequency and space by a function of frequency only. 

We indicate below that the spatial function w i l l  be only weakly dependent on frequency 

for small fractional bandwidth. In that case one can interpret the expansion functions 



as  spatial "carriers" modulated by a set of orthogonal time functions, o r  vice versa. At 
0 

optical frequencies a 1070 bandwidth is approximately 500 A,  and the interpretation of 

J(F, W) a s  a spatial carrier  is realistic. If, however, one proposes to signal with a wide 

enough bandwidth that color variations are  significant, then we must recognize that each 

j (g t) is the convolution of a time function c(t) with jh(;, t). n 
Observe that the same set of time functions can be used to modulate each of the 

orthogonal spatial carriers .  It follows that there are  available approximately D' coor- 

dinates, where D' is the product of the "number" of time functions and the number of 

spatial carriers .  We return to this point in section 2.4a, although a precise formulation 

of the degrees-of-freedom concept must wait until we consider the effects of additive 

noise on the performance of the system. This noise is the ultimate limit on the useful 

degrees of freedom. 

In order to proceed with our interpretation we have to study Eq. 8. It turns out that 

it can be solved for  some interesting geometries. 

2. 2. 2 Solutions for  Special Coordinate Systems 

We are looking for real  functions, J' (c, a ) ,  which have the property that 

where 

- 4 * - A  
Observe, first,  that KR2 is a Hermitian kernel; that i s ,  KR2(uZ-ul) = KR2(ul-u2), 

2 - the conjugate kernel. Second, JR I K~~ (;) I du is bounded for finite apertures R I and 

Rz. In fact, 1 

A 

iou - - 2 - - . (r' -rff ) 

lR SR SR 1 cz 1 dF;dP 

1 2 2  

where A and A are  the areas of R1 and R respectively, and KR2 is a positive def- 
1 2 2' 

inite kernel. For all f (Z) on R1 such that 



io - 2 
i i  u K ~ ~ ~ - ~  d i i , d ~ ~  = ( lR 1 lR f i i i )  exp [ - - cz r l u  ] d; 

2 1 

It follows that the eigenvalues of Eq. 8 a r e  real  and positive, and the eigenfunctions a r e  

orthogonal on R1 and also complete in the class of square -integrable functions on R 15 

Therefore, any arbitrary function of spatial variables can be represented within arbi- 

t rar i ly small e r r o r  by a series  expansion in these eigenfunctions. 

Equation 8 has been solved for only a few simple geometries. Slepian has been most 

intimately involved with this problem during recent years ,  and in the following exposition 

we rely heavily on his results.16 He shows that (8) simplifies i f  R2 is a scaled version 

of R,; that is, if R is in R1, then aR is in R2, and i f  R 1 is symmetric, 2 in R1 implies 

-2 in RI  . Finally, i f  +(X̂ ) is a solution to Eq. 8 in R1 with the eigenvalue p ,  then 

with 

Equation 10 shows that the solutions to (8) a re  eigenfunctions of the finite Fourier t rans-  

form. Slepian has solved this problem f ~ r  circular apertures, R1 and R2, but we refer 

to his earl ier  results for rectangular apertures1' for a simple illustrative example. 

In particular, let R be a rectangular aperture in the input plane z = 0 with 1 xl -< Lx 1 
and / y /  -C L and R be a rectangular aperture in the output plane z = Z with /xll  -C Lk 

YJ 2 
and / y ' l  -C L" 

Y' 

w L &  Y sin - sin - 
- c z  ("1x-u2x) . c z  (uly-u2y) 
- 

Inasmuch as  KR2 factors into product of functions along the x and y axes, we find 

that the solutions to (8) also separate in these variables: J1(;, o) = J i ( x ,  w) J i ( y ,  o) 



where = xy + yT 
x Y' 

wL& 
sin - lLx Ji(xr,w) 

cz (x-x') 
= P , (w) Ji (x, 

-LX lT (x-X' ) 

wL' 

L 
Y 

sin- (y-yl) dyl c z  
= P 2 ( 4  Ji(y,w). 

.(y-y' ) 

Integral equations of the form (11) a re  well known. The solutions a re  prolate- 

spheroidal wave functions of zero-order (m = 0). 1 7 - 1 9  Some properties of these eigen- 

functions a re  summarized in Appendix B. At this point we observe only that their 

dependence on frequency w is carried by the parameters Dx and D 
Y' 

2w Dx =- 
TCZ LxLk for variations in the x direction 

D = -  2w L L' 
Y scz Y Y 

for variations in the y direction. 

The eigenvalues a r e  monotonically increasing functions of D. For a fixed value of 

D they a re  monotonically decreasing with the order  of their associated eigenfunc- 

tion. Roughly speaking, the nth eigenvalue is unity for n -C D and falls rapidly to 

zero for larger  n. This behavior is illustrated in Fig. 4. We shall investigate 

the variation of Pn(D) more carefully in conjunction with the performance analysis 

in section 3 .  3 .  

Fig. 4. Eigenvalues of the prolate spheroidal wave equation. 

15 



2. 2. 3 Discussion 

Equation 8 a r i s e s  in connection with other applications. F o r  example, the maximum 

power is coupled between apertures  sited at  R1 and R2 if the spatial variation of the input 
20-23 The signal is chosen to be the eigenfunction of (8) having the largest  eigenvalue. 

net power transmitted in each mode is proportional to  the eigenvalue. Also, Gamo 24 

observed that the transmission kernel K could be expanded a s  a s e r i e s  of products of 

orthogonal functions that a r e  solutions of Eq. 8. Although he does not explicitly make 

the connection, i t  follows directly that the functions can be paired a s  input and cor re-  

sponding output to  the optical system. 

The work that is closest in  spirit  to our research  has been done recently on the com- 

putation of resonant mode patterns within a cavity terminated by confocal reflec- 

to rs .  25-27 Boyd and Gordon characterize a mode a s  a "field distribution that reproduces 

itself in spatial distribution and phase, though not in amplitude, a s  the wave bounces 

back and forth between the reflectors.1t25 This definition recal ls  our  observation that 

the solutions to (8) reproduce themselves, in  scaled version, when processed by the 

finite Fourier  t ransform operator. In fact, the resul ts  of Boyd and ~ o ~ e l n i k ' ~  do show 

that the solutions to  (8) a r e  the modes when the reflectors a r e  of s imi la r  shape but dif- 

ferent size. Therefore any progress  in solving that equation for  new geometries will 

be useful for  both their  analysis and ours.  Moreover, this exact relationship implies 

a technique for  synthesizing the various spatial coordinates i f  the cavity modes can be 

separated and their  relative amplitudes properly controlled. With respect to waveform 

synthesis recal l  that 

The quadratic phase factor is equivalent to the phase added by a thin lens of focal 

length Z. Therefore,  the optimum source is realized by focusing the eigenfunction 

solution C (a) J1 (;, u) onto the receiver aperture.  

h second interesting group of observations concerns the distribution of eigenvalues 

a s  a function of the antenna system parameters .  The number of spatial eigenfunctions 

that correspond to eigenvalues that a r e  grea te r  than 1/2 is approximately Ds = D D = 
2 x Y 

16 L L L1 L1 /(hZ) = A ~ A ~ / ( ~ z ) ~ ,  where Al and A a r e  the a r eas  of R1 and R2, respec- 
X Y X Y  2 

tively. This dependence on the aperture a r eas  also obtains for c ircular  apertures,  and 

we conjecture that it is approximately t rue  for  arbi t rar i ly  shaped apertures.  

Can the analysis be extended to other aperture geometries? Although we have no 

further exact resul ts ,  the following arguments a r e  useful. If one has two input aper- 

tu res  W and R;, and R i  is contained within R1, then the optimum performance obtained 

by using R i  is at best equal to the performance by using R1. This follows because one 

can constrain the optimization over R1 to use functions that a r e  nonzero only over R i .  

The constrained optimum cannot exceed the unconstrained optimum. This argument 

clearly applies directly to comparing the performance of different-sized receiving 



apertures. Note then that one can use this technique to get upper and lower bounds on 

the performance of arbitrary apertures, using known results for circular and rectan- 

gular apertures. 

When the transmitted signal is limited to the narrow temporal bandwidth W, then the 

total number of significant eigenfunctions is 2TWDs. Therefore, we call Ds the "space- 

bandwidthn product, by analogy with ZTW, which is the "time-bandwidth" product. 
2 Observe that the apparent beamwidth of the source antenna is approximately A /A9 s tera-  

dians. Therefore, D is approximately equal to the number of flbeamwidthsfl of aper- s 
ture 1 intercepted by aperture 2, and vice versa. 

'2.3 SPATLAL DEGREES OF FREEDOM 

We use "degrees of freedomn to designate the coefficients that can be independently 

adjusted in the ser ies  expansion of each member of an arbi trary set of functions, It is 

useful to ask how many degrees of freedom a re  required to approximate the class to 

within a specified tolerance. We discuss this question as  applied to the representation 

of two-dimensional waveforms across the source and receiver apertures of the commu- 

nication link described in section 2. 1. 

Observe that this discussion is concerned with finding an efficient representation for 

arbi trary signals at the source aperture and their transformations at the receiving aper- 

ture. We shall eventually return to our principal investigation of how one designs opti- - 
mum signals to convey information through the channel when the received signal is 

corrupted by additive noise. That analysis shows that one should spread the available 

average signal energy among the i solutions of Eq. 8 which have the largest eigen- b 
values. For  moderate values of the signal-energy to noise-power density ratio, we 

find that i is approximately equal to D, where D is a parameter in (8) that is computed b 
from the antenna system geometry. We shall show that there is good reason to claim 

that D can also be interpreted a s  the number of degrees of freedom in the propagation 

channel. For rectangular apertures D = Ds, a s  defined above. It follows that D is an 

important parameter for optimum signal design. For  larger  values, ib increases 

somewhat slower than increases in the logarithm of the signal-to-noise ratio. 

The coordinate functions of the expansion developed in section 2. 2 a re  orthogonal 

over the source aperture and complete in the space of square-integrable functions 

defined on the aperture. They have two additional useful properties. 

(i) The propagation channel uniquely transforms each orthogonal function at the 

source into one of a complete set of orthogonal functions at the receiver. 

(ii) The received energy in the ith orthogonal function is scaled by a factor of {pi}. 
D of the bi} are  approximately unity; the res t  a re  approximately zero. 

We take the quality of a ser ies  approximation to a function to be measured by the 

energy in the remainder. This energy is easily shown to be a weighted sum of the {pi}. 
This is one additional reason that the solutions to Eq. 8 have convenient properties for 



a discussion of spatial degrees of freedom. 

Recall that the eigenfunctions of (8) a re  also eigenfunctions of the finite Fourier 

transform. If one correctly handles quadratic phase terms,  the channel output is the 

Fourier transform of the source distribution. The output voltage at a point X; on the 

xf axis is proportional to the Fourier transform component of the source at the spatial 

frequency x;/AZ (lines/inch). The fact that the output aperture is limited in extent 

means that the receiver can detect only frequency components of the input smaller than 

L ~ / x Z  in the x direction and L' /AZ in the y direction. Therefore, the cascade of free- 
Y 

space propagation plus a finite-size receiving aperture functions like a lowpass band- 

limited filter for spatial modulation at the channel input. Furthermore, the finite size 

of the input aperture has an effect that is analogous to "time-limiting" the extent of the 

source inputs. In fact, it is helpful to think of the channel as  the spatial analog to a 

bandlimited channel with "time limiting" at the input. 

Having this insight, we can apply results recently derived by Landau and Pollak, to 

make a precise statement about the number of degrees of freedom of the channel. We 

quote from a paper in which they discuss the degrees of freedom in a one-dimensional, 

bandlimited channel. 29 

"The purpose of this paper is to examine the mathematical truth in 
the engineering intuition that there a re  approximately 2TW independent 
signals (+i) of bandwidth W ,  concentrated in an interval of length T. 

Roughly speaking the result is true for the best choice of the +i (prolate- 

spheroidal wave function) but not for the sampling functions (of the form 
sin t/t). Some typical conclusions are: 

Let f (t), of total energy 1, be bandlimited to bandwidth W, and let 

Then 

is 

(a) true for all such f with N = 0, A = 12 if the (+n) a re  
prolate spheroidal wave functions. 

(b) false for some f, for any finite constants N and A if 
the (+ ) are  sampling functions." n 

Now, apply the analogy between spatial and temporal variables to this theorem to 

get the following results for a one-dimensional source. Let f(x) be of total energy 1 and 
2 

limited by the input aperture to 1 x 1 C L ~ / Z .  If all but eT of the energy in f (x) is confined 

to spatial frequencies smaller than Ws, where Ws = Lk/XZ, then the e r ro r  in approxi- 

mating f(x) by a linear combination of the first 2LxWs prolate spheroidal wave functions 
2 is less than 12 eT. Recall that since f(x) is the field at the source antenna, then according 



2 to our previous arguments, 1 - eT of the channel output energy is confined to a beam 

that intersects the receiving antenna over 2L1 (meters). 
X 

We shall identify D = 2LxWs = 2LxLk/hZ, the scaled product of antenna dimensions, 

with the number of degrees of freedom in an antenna system. For two-dimensio~?al, 

planar apertures, D is the scaled product of aperture areas. 

The observation that the channel apertures impose limitations on the size (duration) 

and detail (bandwidth) of the source object that can be faithfully reproduced suggests that 

there is a potential trade between these two quantities. In fact, it is possible to scale 

up the object so that one can image a small area  with high resolution; conversely, one 

can transmit a reduced version of a large area at the cost of poorer resolution because 

high-frequency components a re  attenuated. 

There is another possible trade, namely between temporal and spatial variables. The 

factor C ( w )  in Eq. 10 implies a temporal degeneracy to each spatial mode. We conclude 

that the spatial functions can be used as  extra orthogonal "carriers" for signals that can- 

not be transmitted within a limited temporal bandwidth. Similarly, one can transmit 

pictorial (spatial) data sequentially via time modulation. 

2.3.1 Comparison of Analyses of Degrees of Freedom 

The most insightful analysis of the degrees of freedom in an electromagnetic wave 

has been given by Gabor. ' Although he credits von ~ a u e ~ '  with the essential result, 

this work has not been a s  accessible or  a s  stimulating a s  Gaborls expositions. He for- 

mulated the question as  follows: How many independent variables a re  necessary to 

express as much of the function t(x, y) , the complex amplitude transmission of an object 

in the source plane, a s  we can learn from an optical image (of finite extent) ." 
Gabor1s analysis proceeds from the observation that the source can be represented 

in terms of its Fourier components, which stand for periodic plane waves propagating 

at all directions to the source plane. The intermediate step is to show that by proper 

selection of the Fourier components one can construct "elementary beams" that satisfy 

the following relation with equality. 

A (smallest effect beam area) X i2 (solid angle of divergence) 1 
2 2 3 1. 

h (w avelength) 

If A2 is the area  of the receiving aperture, then each elementary beam is limited in 

extent to A2 only if  

As D increases we can, in principle, cover the output aperture with DS "nonover- S 
lappingN elementary beams. It is clear that we cannot get completely disjoint beams 

with only a limited range of Fourier components. Gabor notes, however, that 

"physicists have their own standards in these matters," and that the accuracy of the 



approximation improves a s  D increases. S 
It is precisely this point that is clarified by the analyses of Slepian and ~ o l l a k "  and 

by Landau and ~ o l l a k . ~ ~  Their results show that there a re  DS orthogonal functions 

having essentially unit energy in the space of functions defined on the source and 

receiver apertures. The difference in their approach lies in the definition of indepen- 

dent variables. Gabor counts the complex amplitudes of "nonoverlapping" beams, which 

a re  essentially orthogonal, whereas Pollak allows beams to overlap but assumes that 

they can be separated by means of strictly orthogonal operations. Therefore, the orthog- 

onal functions occupy the entire accessible area  of the source aperture, in contrast to 

occupying 1/D of the area. 
S 

The number of degrees of freedom does not depend upon which aperture is considered 

to be the source and which is to be the receiver. If the smaller aperture happens to be 

the source, one can characterize the receiver processing a s  an attempt to use the larger  

aperture to focus down to get details of the source. Similarly, the source focuses mul- 

tiple beams on the receiver if  i t  has a larger  transmitting antenna. 

2.3. 2 Further Application of Spheroidal Wave Functions in Optics 

Three properties of the solutions to Eq. 10 furnish the mathematical basis for new 

approaches to familiar problems in applied electromagnetic theory. We discuss these 

results for  the special case of rectangular apertures, but they can be generalized to a 

wider class of geometric constraints. Let be the ith prolate spheroidal function. 

Then 

(i) The functions {+i(~)) form a complete orthogonal set on the finite interval 1 x /  G 

L/2. 

(ii) The functions a re  also orthogonal on the infinite interval. 

(iii) The finite transform of (Pi(x) is again +i with an appropriately scaled argument. 

Among sets  of orthogonal functions on the interval 1 x (  Q L/2, the {+i) have the largest 

energy concentrated in the range of frequencies lo1 < Ws. 

The first  application of these properties is to antenna pattern synthesis. 31-33 Prop- 

er ty (i) ensures that one can approximate any desired radiation pattern by spheroidal 

wave functions over a finite interval. When a transmitting antenna is focused at infinity 

its far-field radiation pattern is the Fourier transform of the field across the source 

aperture. Therefore, we can invoke the self-transform property (iii) to show that the 

source for the desired radiation pattern is synthesized by a linear combination of sphe- 

roidal wave functions. The coefficients in this expansion a r e  the same coefficients a s  

those in the expansion of the radiation pattern. 

In addition to simplifying (computationally) the pattern synthesis problem, the 

analysis can also be applied to illuminate the issues surrounding " super r e  ~ o l u t i o n . ~ ~  

Woodward and LawsonS4 showed that the difficulty in getting a radiation pattern much 

narrower than that of a uniformly illuminated aperture is "practical" rather than theo- 

retical in nature, namely (a) it  requires very accurate control of large currents in the 



aperture, and (b) a relatively large amount of energy is stored in inductive fields around 

the aperture. This energy is not radiated. 

These conclusions a r e  easily seen from the representation of a radiation pattern in 

t e rms  of spheroidal wave functions. Thus, if  the desired beam is relatively narrow, the 

approximation requires more high-frequency spatial components. But these undergo 

the largest attenuation by propagation. Therefore, the corresponding functions used to 

synthesize the source will be given relatively large amplitude. Moreover, these high- 

frequency functions oscillate rapidly within the source aperture. Then too, spatial fre-  

quencies in the source that a r e  higher than l/wavelength do not propagate. Their energy 

is stored in evanescent waves in the vicinity of the source. The fraction of source 

energy tied up in these frequencies must increase a s  one requires increasingly better 

approximations to a narrow -beam pattern. 

The second application is called apodization, 20-22 and deals with maximizing the 

transfer of energy between two antennas. In particular, we look for the source distri- 

bution that yields the most concentrated beam in the Fourier transform domain. From 

property (iii), the spheroidal wave functions a r e  solutions to this maximization problem. 

slepianZO has published the apodization result for optical systems, in which the light dis- 

tribution on the r ea r  focal plane of a lens is the Fourier transform of the object distribu- 

tion. ~ o r ~ i o t t i ' ~  observed the same property with regard to power transfer between 

antennas. In a similar vein, walther3 relates the energy flux in an optical image plane 

to the degrees of freedom of the optical system and radiance of the source in the object 

plane, using the spheroidal wave function expansion. Finally, several authors have pro- 

posed that one can take advantage of the double-orthogonal property (ii) to get "super- 

resolutionI1 in an imaging system. 36-40 We shall review this application in section 4. 1. 

2.4 TEMPORAL DEGREES OF FREEDOM 

In the preceding discussion we suppressed the role of temporal modulation of the 

signal car r iers .  This enabled us to concentrate on characteristics of the spatial mod- 

ulation, but it  also reflects the fact that in most cases these processes can be considered 

separately. It is only when one seeks to determine ultimate performance limits imposed 

by the channel that the interaction between these modulation modes becomes prominent. 

Recall that the channel is modeled by a space and time-invariant linear filter, having 

the impulse response function h ( r ,  a), where 
* 

II II 
ap exp [- + [z - Q]} 

We see that the impulse response has the characteristics of a highpass filter in cascade 

with a variable propagation delay. The percentage of variation in either the amplitude 

o r  phase of h ( c  o) caused by varying w by 6w is 



It follows that distortion of the temporal structure of the signal by the channel filter is 

negligible unless the modulation approaches a 10% bandwidth; that i s ,  3 X l o 1  Hz for 

a C 0 2  laser  and 5 X 1012 Hz for a Helium-Neon laser. We conclude that the optical 

channel imposes no practical constraint on the bandwidth of the radiation field. Such 

constraints that exist w i l l  reflect limits on contemporary technology of wideband mod- 

ulation of coherent sources. 

This conclusion is supported by analysis of the functional dependence of the sphe- 

roidal wave functions on frequency variations, The frequency dependence shows up only 

through dependence on the degrees of freedom, D. As shown in Appendix B, this depen- 

dence is relatively weak; for example, for moderate values of D. 

Nevertheless, some interesting issues arise in the case of large signal bandwidths. 

We ask the following question: Is there an interaction between the spatial characteristics 

of an antenna pattern and the temporal degrees of freedom associated with that mode? 

The answer is "Yes," for two reasons, both based on the fact that the spatial bandwidth 

of the nth spheroidal wave function is monotonically increasing with n. 

First ,  observe that there is a delay differential between signals arriving at the cen- 

t e r  of the receiving aperture and signals arriving at the edges. It takes a finite time for 

each successive spatial pattern to be built up across the receiving antenna. Inasmuch 

as the field incident at the receiver is the Fourier transform of the source, it fol- 

lows that this "transit-time" constraint is relatively more restrictive for higher order 

modes. 

The more interesting effect is that the effective temporal bandwidth of the spatial 

modes varies inversely with the mode number. That i s ,  the nth spatially dependent 

spheroidal function is independent of frequency (wavelength) in a bandwidth that decreases 

a s  n increases. In effect, these higher order modes tend to act more like resonant cir- 

cuits having a relatively large part of the source energy stored in inductive fields around 

the antenna. [ ~ n  a practical system one would not force more detail onto the transmitting 

aperture than corresponds to an optical wavelength. This argument is included for com- 

pleteness of the mathematical analysis.] This phenomenon is caused by the relatively 

rapid rates of change of the field strength across the aperture in the higher order modes. 

It is the same effect that occurs with "super-gain" radiation patterns, which have a rel- 

atively narrow modulation bandwidth and are  quite sensitive to deviations of the source 

excitation from nominal design specifications. 

We estimate the bandwidth over which the ith spatial mode distribution is independent 



of frequency. In principle, one can compute the number of effective degrees of freedom 

far wider bandwidths, but that turns out not to be worth the effort. 

2.4. 1 Effective Bandwidth of the Spatial Modes 

Our estimate of the number of temporal degrees of freedom for narrow-band mod- 

ulation is based on the following property of the optimum spatial modes. 

Let Fk(f, w) be defined a s  one of the set of orthonormal solutions to (8) on the source 
d 

aperture. Consider the functions F. ( r ,  a), where F.  ( a )  = C )  F k  and the lk lk 
Cik(w) are arbitrary functions of frequency that represent the temporal modulation. The 

{Fik(f, a)) corresponding to different spheroidal modes are  orthogonal over the source 

aperture. 

Therefore, i f  the Ci, k ( ~ )  are  properly selected, each spatial mode can be separated into 

a number of orthogonal modes on the basis of time dependence. The number of useful 

orthogonal modes i s  limited, in turn, by the condition that the channel output be orthog- 

onal over the receiving aperture. This requires that 

unless i1 = i ,  

where pk(w) is the functional dependence of the eigenvalue of the kth spheroidal mode. 

It i s  characteristic of narrow-band operation that p (w) does not vary over the frequency k 
range where Cik(w) is nonzero. Therefore, if  the temporal channel is limited to a band 

of W Hz,  each spatial mode can serve a s  the carrier  for 2TW orthogonal temporal 

modes. As W increases, however, the variation of pk with w must be considered in 

counting orthogonal modes. We do know that p (w) is more sensitive to variations in w k 
for larger k, but it  is not feasible to continue further because analytical expressions 

for pk are  too awkward to manipulate. We proceed along an alternative route to esti- 

mate the bandwidth of the kth mode, using results from the theory of radiated antenna 

modes. 

It i s  a familiar result that the bandwidth of a resonant circuit is inversely propor- 

tional to the ratio of stored energy to energy that is radiated by the circuit. Many 

authors have shown that an antenna presents a reactive load to its source at the input 

terminals. We can derive the parameters of an equivalent circuit for this load in terms 

of the radiation pattern.41 It is claimed that the quality factor, Q, for this equivalent 

circuit gives a good estimate of the relative bandwidth of the radiation pattern.4Z The 

relative bandwidth is proportional to Q-l, with the approximation improving as Q 
increases beyond unity. Let us assume that this assertion is valid. 



Since the source is limited in extent by the transmitting aperture, it can be expanded 

in a Fourier series whose fundamental frequency is 1 / ~ ,  where L is a dimension of the 

aperture. It can be shown that spatial frequencies whose period is less  than a wavelength 

do not propagate. Energy at these frequencies goes into llevanescent" waves that die out 

within a few wavelengths of the aperture. This energy is usually identified with the 

reactive energy stored in the fields around the aperture. Energy at lower frequencies 

is identified with dissipation in the "radiation" resistance. Therefore, Q is computed 

as  follow s .43 In one -dimension, 

where 

and f(x, w) is the field strength of a monochromatic (narrow -band) source in the trans- 

mitting aperture; F(u, w) is the Fourier spectrum of f(x, w). 

The co'mputation of Q is simplified by the following manipulation. 

We can assume that f(x,w) is of unit energy. Therefore, 

The denominator in (13) is the energy in the bandlimited version of a function defined on 

the finite interval 1 x 1 G L/2. Now if we set F(u, a) = + i ( ~ ,  w) with the ith spheroidal wave 

function having a parameter D = 2LWs/hZ, then 

Therefore we can set an upper bound on Q for the ith spheroidal wave function, 



It follows that we can set a lower bound on the effective bandwidth for the ith mode in 

terms of the distribution of eigenvalues for the spheroidal wave functions. 

Weff - Q-l - 2,- Pi for Q n 1, 
Wo 1 - Pi 

VET being the maximum modulation bandwidth for a narrow-band carrier  at C/X Hz, which 
0 

i s  arbitrarily taken to be c/2h Hz. 

This indicates that the relative bandwidth of the higher order modes decreases with 

Pi a s  P. approaches zero with increasing i. If we assume that the relative bandwidth i s  
1 

essentially unity for the lower order modes having pi = 1, then we get the following intui- 

tively satisfying result. Let We be the equivalent bandwidth available from narrow -band 

temporal modulation of all of the spatial modes. Then 

That is ,  the available bandwidth is Wo times the number of spatial degrees of freedom. 

Therefore, for narrow -band temporal modulation, the count of total available degrees 

of freedom i s  given by the product of the number of spatial and temporal degrees 

of freedom. 

2 . 5  DISCUSSION OF RESULTS 

It proves quite useful to develop the analogy between spatial variables for wave prop- 

agation and temporal variables for linear time-invariant systems. Thus position across 

the input and output antennas is analogous to time at the input and output of a linear time- 

invariant filter. The source antenna constrains the domain (duration) of input signals, 

and the receiving antenna limits the range of spatial bandwidths of the source that i s  

received. The net effect simulates a linear filter with a time-limited input and a 

bandwidth-limited output. Therefore this research can be viewed as  applying principles 

of communication system design to analyze a special class of filter channels, The 

results are particularly interesting for two reassns. 

1. The propagation channel has not yet been carefully studied. Recent developments 

in optical technology suggest the potential for using the channel more intensively than 

ever before. 

2. The analysis can be carried through to specific conclusions that also help us to 

understand several other issues in addition to the original communication question. 

Our results show that it is possible to separate the filter channel into a set of paral- 

lel noninteracting subchannels (under the assumption that any additive noise has Gaussian 

statistics and a frequency- and angle-independent power spectrum) by proper selection 

of signaling waveforms. This mathematical analysis also permits us to answer a related 



question, How many degrees of freedom a re  available in the channel? The number of 

degrees of freedom computed by conventional means is essentially the number of e igm- 

values of Eq. 8 that a re  approximately unity. This implies that all measurements at 
the receiver a r e  equally affected by spatially white additive noise. In contrast, we shall 

see that in a communication application relatively weak signal modes a re  used if the 

over-all signal-to-noise ratio is high enough. Information is coded redundantly across 

all subchannels so that even the weak modes contribute to making a reliable estimate of 

the transmitted message. 

Let us look further at Eq. 9 which expresses the solutions for the set of optimum 

signaling waveforms. The quadratic phase t e rm is the same amount of phase advance 

that is imparted by a spherical converging lens of focal length Z. This means that for 

optimum operation the transmitting aperture should be focused on the receiving antenna. 

Furthermore, the field in the focal plane of a lens is the spatial Fourier transform of 

the field in the source plane. Therefore, the receiving aperture functions a s  a band- 

limiting, lowpass filter. This makes more plausible the result that the J L ( ~  a) a re  pro- 

late spheroidal wave functions that remain orthogonal when bandlimited. 

Prolate spheroidal waveforms have a complicated functional dependence on spatial 

variables. It is reasonable to  ask i f  there is a practical way to generate them for con- 

venient use. Two synthesis techniques a re  most attractive at this time. The first  and 

most straightforward method is to illuminate a set of transparencies from behind with 

a plane -w ave source. Each transparency would carry  the appropriate amplitude varia- 

tions in density variations. Spheroidal wave functions a re  real-valued, so the only phase 

variation required is either 0" o r  180 ". Each message is to be encoded a s  a linear 

weighting of the basic spheroidal wave functions. This operation can be realized by 

splitting the beam from a laser  source so that each of a basic set of transparencies can 

be illuminated by a plane wave having the proper strength. Alternatively, one can imag- 

ine the sequence of messages a s  being similar to a film str ip that is passed in front of 

the laser  source. 

The second technique has already been discussed. In principle, we can devise an 

optical cavity, terminated by spherical mi r ro r s  that will have resonant modes whose 

amplitude distributions a re  the spheroidal wave functions. To the extent that these 

modes can be separated and made individually available, the synthesis problem is 

solved. Progress in the technology of gaseous lasers  suggests that this mode separation 

will be feasible, for at least a few modes. 44 

Let us observe in conclusion that the source is equally well synthesized by a current 

distribution across an aperture o r  by diffraction of a plane wave by a transparency in 

the transmitting aperture. The optical cavity is one means of generating a current dis- 

tribution in a particular region of space, at the required ca r r i e r  frequency. 



111. COMMUNICATION IN THE PRESENCE OF NOISE 

We have ignored the effects of noise in order  to emphasize the signal transforming 

properties of the channel, and the "degrees of freedom1' concept. The principal dif- 

ference between the classical analysis a s  represented by Gabor and the communication 

approach that will be presented here  is an assumption made about our ability t o  control 

the source process  that is to be propagated through the channel. In classical analysis 

the source cannot be modified by the instrument designer. His task is to  devise a pro- 

ce s so r  to reproduce the source f rom a distorted channel output with maximum fidelity. 

He counts a s  degrees of freedom the minimum number of independent parameters  that 

a r e  needed to represent  the source to  within his  fidelity criterion. The classical anal- 

ys i s  does not consider the effect of additive noise in  its estimate of the number of 

degrees of freedom. 

The communicator assumes  that he can design the message source to  optimize a 

performance criterion. Therefore an a rb i t ra ry  source is likely to  be transformed 

(coded) into a new source that is better matched to the channel characteristics.  The 

parameters  of the modified source a r e  then used to amplitude-modulate the independent 

parallel  subchannels. The number of subchannels t o  be used in any instance depends 

specifically upon the noise environment a t  the receiving station. Fo r  communication 

purposes, the number of useful degrees of freedom is limited only by noise and by equip- 

ment complexity. 

Noise sources a r e  the ultimate factor that prevent us  f rom achieving arbi t rar i ly  good 

communication performance. We next apply the noise-free signal representation to 

analyze the effects of certain noise disturbances. We r e fe r  he re  to additive noise 

sources,  including background noise, quantum noise f rom some measurements, and 

thermal  shot noise in the receiver  circuits. In the analysis here  i t  is assumed that the 

signal propagates through f r ee  space with no turbulence. [we have excluded f rom our 

model noise-like effects caused by the random, turbulent s t ructure of the propagation 

medium. It appears that the effect of turbulence is adequately modeled by a slowly time- 

variant, spatially dependent random attenuation and phase shift of propagating waves. 

Communication through atmospheric turbulence is receiving close attention a t  this 

time. 45-47 ] Our approach to  modeling the effects of additive noise in the free-space 

channel is a consequence of the analysis of section 2. 1. In particular, we have shown 

that the channel performs a l inear spatially invariant filtering on the input signals, a s  

indicated in Fig. 5. It follows that the resul ts  of conventional noise analysis for  l inear 

temporal-filter channels can be extended to  include effects of spatial  variation. 
4 4 

We shall assume that the additive noise process  n(r ,  t )  is a sample function f rom a 

zero-mean vector Gaussian random process. This seems to be a valid approximation 

for  optical background noise (from incoherent sources)  and for  certain quantum mea- 

surement noise. We will justify this  assumption eventually, a s  par t  of the statisti-  

ca l  characterization of the noise. 



Fig. 5. Linear-filter model for  the radiation channel. 

F i r s t ,  we shall  present an  extension of optimum receiver  principles to  include spa- 

tially dependent received signals. Then the noise s tat is t ics  will be derived and com- 

bined with these resul ts  to specify the optimum receiver. These resu l t s  a r e  illustrated 

by evaluating bounds to the performance obtained with a signaling scheme that u ses  ran- 

dom coding over a se t  of spatially modulated waveforms. 

3.1 OPTIMUM RECEIVER PRINCIPLES 

We wish to determine the s t ructure of the signal processing performed by the 

receiver  that makes a minimum e r r o r  probability decision on what message has been 
4 4 

transmitted. Referring to Fig. 5, assume that the transmitted signal, jk(r, t), is one 

of M waveforms (messages)  excited a t  the transmitting aperture. A vector field 3;;: t ) =  
d 

ek(r ,  t )  + ;(; t )  is incident a t  the receiving aperture when the kth message is transmitted. 

The receiver  is restr ic ted to make its decision on the basis  of 5g t )  over the receiving 

aperture,  during a T-sec  detection interval, It I -< T/Z. 

We shall  assume that the distance between the t ransmit  and receive apertures  is 

sufficient to  ensure that the signal component of the received field is essentially a non- 
4 A 

uniform plane wave a t  normal  incidence to  the receiver.  Therefore ek(r,  t )  is a vector in  

the receiving plane, whose amplitude and orientation (polarization) a r e  known a t  every 
4 

point. We shall ignore any components of e that a r e  normal to the aperture.  
4 k 

It is assumed that the noise n(r ,  t )  is a sample function f rom a zero-mean, vector, 

Gaussian random process. We also assume that a t  any point on the receiver  plane 

orthogonally polarized components of the noise field a r e  uncorrelated, and hence s ta-  

tistically independent. Therefore, we need consider only a sca la r  (not vector) problem 



A A 

if the input signals {jk(r,  t)} a r e  linearly polarized; that is,  they lie along the (arbi t rary)  
d 

vector es. 

It can be shown that the receiver  that makes a minimum-error probability decision 

chooses the transmitted waveform that is a posteriori  most likely.6 We simplify the 

analysis by assuming that a l l  inputs a r e  a prior i  equally likely. The decision rule 

reduces to: Maximize the "likelihood, l' L, 

Lk = Probability that the channel output 5; t )  is received, given that the kth mes-  

sage was transmitted. 

Decision rule: Choose k if max L = Lk. 
j j 

It is necessary to introduce a mathematical artifice into the computation of the L k 
in  o rde r  t o  correctly model the random-noise process  component of the channel output. 

A 

In particular, let  $(r, t )  be a se t  of orthonormal and complete functions over the 

receiver  aperture,  then 

= 0 otherwise. 

(b)  If there is a n  f(K t )  such that 

then 

A 

We can expand O(r, t )  in the se r i e s  form: 

where 



We have left open the possibility that an  infinite number of o~(;' t )  is used to  repre-  

sent the received signal. Certainly no more than M functions a r e  required for  the mes-  

sage components. If, however, the +. a r e  chosen to represent  the messages most 
1 

efficiently, i t  may happen that the remaining {oJ cannot be ignored because they a r e  

correlated with the noise components of the f i r s t  M coefficients. 

Call the se t  of Oi the vector 2. We rewrite the likelihood a s  

4, = P[O I j k G  t)]. (18) 

NOW, if the kth message is transmitted, the {oJ a r e  Gaussian random variables, and 

Define the covariances (O..), where 
13 

Then 

A A 

(oi j )  = +:(;, t )  +.(;'. J t ' )  R(;, t ,  ;I, t ' )  d r  d r '  dtdt', 

where 

4 

R(r,  t, r ' ,  t ' )  = ~ [ n ( g  t)n*(;, t')]. 

Define the covariance matr ix R, whose (ij)th element is (O..). R is seen to be indepen- 
11 

dent of the transmitted signal. If we reca l l  the form of the multivariate Gaussian dis- 

tribution, we see  that 

exp - 1 / 2 ( 0 - ( ~ ) ) * ~ *  R-' (Q-(cI) )  - 

where ( )IT is a vector transposed and conjugated, R - ~  is a matr ix inverse, I R  I is a 

matr ix determinant, and we assume an a rb i t ra ry  dimension, N to the sample size. 

The selection of a finite dimensional matr ix was made to  avoid mathematical dif- 

ficulties with I R  I a s  N increases.  In the r e s t  of this analysis we shall not explicitly 

t rea t  the mathematical difficulties that a r i s e  in "singular detection" situations. In a l l  

cases  s e r i e s  expansions a r e  assumed to  converge. 

We can further simplify the decision rule  indicated by the likelihood expression in  



Eq. 21. Recall that R depends only on the noise and does not vary  over the various 
t* -1 source hypotheses. Therefore, 2 R 2, and I R  I a r e  not explicit functions of the t rans-  

mitted signal. All information that depends on the transmitted signal is contained in  

the exponent. Observe that the likelihood is a monotonically increasing function of i ts  

logarithm. Therefore, maximizing the likelihood is equivalent to  choosing the largest 

exponent among the expressions for  Lk. 

Decision Rule: Choose hypothesis k to  attain 

t* -1 Equation 22 has  been simplified by deleting the t e r m  Re (2 R 2) which is shared in  
*T common by a l l  of the likelihoods. Observe that ( Q  ) R - ~  ( 0 )  does not depend on the 

channel output. It is a bias t e r m  that can be computed in advance for  each k. Gall it 

bk. We can describe the operations performed by this receiver  a s  follows. The receiver  

computes N complex numbers, each of which is the projection of the field over the 

aperture during the decision interval onto one of a set  of orthonormal functions. F o r  
*t each hypothesis these data a r e  combined in the bilinear form (2 ) R - ' ~ ,  and an appro- 

priate bias is subtracted. The hypothesis selected corresponds to  the largest  resulting 

number. Observe that the essential  data-gathering operation is the projection of the 

input onto a se t  of orthonormal functions. The r e s t  of the processing is simply a manip- 

ulation of these projections. To proceed further,  we must specify the particular s e t  of 

expansion functions. We have delayed this choice because it does not affect optimality 

of the receiver  structure. 

3 , l .  1 Optimum Receiver with Uncorrelated Noise Samples 

Recall that the elements of R, the ( 0 .  .), a r e  quadratic functionals of the kernel 
13 

( t ,  t ,  ) If R is diagonal, that is, R..  = A. 6. ., then the decision rule takes a par-  
13 1 13 

ticularly convenient form, and Eq. 22 reduces to  

choose the hypothesis k to  attain 

where ( O i )  depends on the hypothesis k. When R is diagonal, the projections of the 
A 

noise process on the expansion functions cPi(r, t )  a r e  statistically independent random 

variables. Looking ahead, we find this to be a useful condition for  two reasons: 

1. The receiver processing is simplified. 

2. It suggests that we might design the transmitted signals s o  that they project onto 

disjoint s e t s  of expansion functions at the receiver.  When this condition obtains we can 

model the channel by a se t  of N independent parallel  subchannels. This is a particularly 



convenient situation for  computing system performance, and it will be discussed 

further. 

The requirement that R be diagonal is equivalent to requiring that each +(r,  t )  be a 

solution to the following integral equation. 

~ / 2  4 A L2 [T/2 
R(t, t ' ,  2 )  +i(>, t ' )  d t 'd r '  = Aimi(r, t). (24) 

with It I T/Z, and ; in R2 aperture.  We shall  assume that R(t, t ' ,  2 )  is such that 

the solutions to (24), having nonzero eigenvalues, a r e  a complete orthogonal set,  and 

that s e r i e s  expansions using these functions converge appropriately. It can be shown 

then, that if we use a finite but increasing number of expansion functions, the receiver  

processing converges to a simple operation: 

choose : 

4 

O(t, r )  gk(t, ;) drdt --$IS ek(t, F) gk(t, 
k 

where gk i s  a solution to  the integral equation 

- - - 8  4 

R(t, r ,  t ' ,  r l )  gk(tl ,  ;') d;dt = ek(t, r). 

In other words, for  each hypothesis, we project the input onto a single coordinate func- 

tion and subtract a bias term.  It is instructive to s e e  what solutions to  (25) look like. 
A 4 4 A 

In case R(t, r ,  t ' ,  r ' )  = a 6(t-T) 6(r-r ') ,  Eq. 25 reduces to  

Therefore, if the additive noise is spatially and temporally "white, " we simply correlate  

the channel output with the hypothesized signal component of the output. This resul t  is 

not surprising a s  a generalization f rom the analysis of temporal modulation with white 

noise, Moreover, we expect that this resul t  should apply whenever the noise is "essen- 
A A 4 4 

tially" white. That is ,  whenever R(r ,  r ' ,  t,  t ' )  i s  concentrated to It-t' I 6 -r and Ir-r' I .-( p, 

where T is much l e s s  than the duration in which e (r) t )  changes significantly (for k 
example, the reciprocal bandwidth), and p is l e s s  than the distance over which e k ( z  t )  

changes. We shall find that these conditions a r e  satisfied by background noise for  the 

optical channel. 

This analysis is a straightforward extension of the analysis for  spatially independent 

signals, with the exception that i t  is more difficult to argue the "whiteness" of the addi- 

tive noise. It is approximately t rue  that noise enters  the channel model by adding sta- 

tistically independent quantities to each of the "degrees of freedom" that a r e  utilized by 



the transmitter.  Within this approximation, the receiver  processing can be viewed a s  

the spatial  analog of "matched-filtering. " This is the process  in  which the channel out- 

put is projected onto stored replicas of the noise-free channel output for  each message. 

If we recal l  the discussion about the s t ructure of the transmitted signals, and note 

that the output reproduces the input with a change in spatial scale, we can interpret the 

operations of the matched filtering a s  follows. There is a quadratic phase t e r m  that 

corresponds to a lens that focuses the receiving aperture on the transmitting aperture.  

A spatial mask (one for  each message) is placed behind the lens (under the assump- 

tion that the signals a r e  narrow-band s o  that this fi l ter is frequency-independent). The 

output of this mask is collected (a t  the focus of a lens)  a t  the input to  a bandpass fi l ter 

that is matched to the temporal frequency character is t ics  of the message. The decision 

variable is the sampled output of this filter. 

Finally, observe that we have been treating complex quantities that represent  the 

instantaneous envelope of the incident electromagnetic field vectors. The analysis 
requires  a "coherent" sampling of the processor output at  the end of the decision 

interval. We can take advantage, however, of the relatively narrow-band signal modu- 

lation t o  avoid the necessity of making direct measurements of the field vectors. The 

detection process  can be implemented by a heterodyne stage, including optical mixing 

with a modulated light beam, followed by baseband (o r  i - f )  processing in the information 

bandwidth. 

3.2 RECEIVER PERFORMANCE 

Starting f rom the assumption that the background noise is adequately modeled by a 

zero-mean Gaussian random process, it follows that we need know only the space-time 

autocovariance function to completely characterize this noise. We shall  derive an  

expression for  the covariance function of background noise, and then combine this 

resul t  with the receiver  principles presented above to evaluate the performance of one 

c lass  of communication system. 

There a r e  three principal sources of additive noise in the communication link. These 

a r e  background noise, thermal  shot noise in  the receiver  processor  circuits,  and 

quantum-measurement noise. Quantum noise ar is ing f rom optical amplification and 

heterodyne operations can be treated within the framework developed here .  If this was the 

major  noise source, however, we would have been better advised to formulate the opti- 

mum receiver  principles in t e r m s  of quantum theory. The analysis in that instance does 

seem to  lead to  receiver  s t ructures  that a r e  not derivable from classical  analysis. 48 

Here we ignore the effects of quantum noise; we shall pick up the issue in  more  

detail in section 3.4. 

We also neglect thermal  shot noise in the receiver  c ircui t ry compared with back- 

ground noise. This approximation is based on the principle that the signal-to-noise rat io  

of an  amplifier is determined primarily by the noise a t  the input to the f i r s t  high-gain 

stage; noise added in subsequent processing has comparatively little effect. F o r  the 



optical case, the heterodyne operation, in which the input signal is moved down t o  base- 

band for  measurement, is equivalent to a high-gain amplification if a s t rong local oscil- 

la tor  is used. 

We focus our attention on background noise-field sources that a r e  statistically inde - 
pendent of the transmitted signal and a r e  collected through the receiver  aperture. The 

sources of background noise a t  optical frequencies vary radically f rom day to night, and 

to  some extent also with the center frequency.49 Direct and scattered sunlight is the 

principal source during the day. At night these sources include starlight, reflected sun- 

light (moonlight and planetary reflection), thermal  radiation f rom the earth,  night glow, 

and man-made noise (city lights). 

Solar radiation is closely modeled by the statistics of "black-body" radiation, which 

i s  a zero-mean Gaussian random process in which the power spectral  density is given by 

4lT hf df Rdf = 7 9 

X , h f / k ~  - 1 

where 

R = radiated power per  unit area,  per  unit frequency interval 

T = effective temperature OK 

h = Planck's constant 

k = Boltzmann's constant 

Curves illustrating the variation of R(f, T )  a r e  given in Fig. 6. The effective tempera- 

tu re  of the Sun is taken to  be 6000°K, a s  illustrated in Fig. 7. The solar  spectrum peaks 

a t  0. 5 p in the visible range. Although the radiation decreases  sharply at  infrared f re -  

quencies, Fig. 6 indicates that radiation f rom direct sunlight remains f rom one t o  two 

orders  of magnitude grea te r  than thermal  radiation f rom the earth, even a t  10 p 

(C02 l a se r )  where the la t ter  attains a maximum. Scattered sunlight is a l e s s  intense 

source. If the l a se r  system is shielded f rom direct sunlight, the principal source of 

noise a t  10 p is radiation f rom the earth. At night (no sunlight) the ear th temperature 

is the principal source of noise a t  1 0 p, but is negligible a t  0.5 p. At the shorter  wave- 

lengths, a t  night, the principal noise sources a r e  man-made noise, starlight, nightglow, 

and reflected sunlight. 

Astronomers have calculated the effective brightness of astronomical bodies and 

objects. In general, one might model them by a distribution of independently radiating 

point sources,  each having black-body statistics appropriate to  i t s  temperature. Simi- 

larly, it s eems  that one ought to  define a distribution of extended sources to  characterize 

man-made noise. Measurements confirm our intuitive expectation that the background 

sky noise is highly variable, depending on terrain,  cloud conditions, and city 

features in  the field of view of the receiving aperture. In view of the potential richness 



0.1 1 .o 10 100 

Wavelength (microns) 

Fig. 6. Energy spectrum of black-body radiation. 
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Fig. 7. Energy spectrum of scalar  radiation. 



of detail needed to characterize the noise, i t  is well to  step back to s e e  just how much 

detail is indicated in an adequate model. 

In communications applications we a r e  satisfied with statistical characterizations of 

the incident noise processes.  We have seen that the natural sources of background noise 

a r e  conventionally modeled a s  Gaussian random processes  (black-body). Similarly that 

portion of man-made noise ar is ing f rom electric light bulbs is also Gaussian in  charac- 

ter.  Although other sources,  such a s  advertising signs, moving beacons, and stadium 

floodlights may not individually behave a s  diffuse radiators  of Gaussian noise, i t  is 

tempting to claim that their net distribution is approximately Gaussian. (Apply the Cen- 

t r a l  Limit theorem to a sum of independent zero-mean processes  radiating with finite 

power.) We shall adopt this asser t ion without proof. 

3.2.1 Covariance Function for  Gaussian Noise Sources 
4 4 

Let n( r ,  t )  be the vector noise field incident on the  receiver  aperture. We wish to 
4 4 

compute the covariance function R(t, r ,  t ' ,  r ' ) ,  where 

--L -_L -* - 
N t ,  r ,  t ' ,  r ' )  = ~[z((rl t ) .  n ( r ' ,  tl)]. 

4 4 

We have assumed that n( r ,  t )  is a sample function f rom a zero-mean vector valued com- 

plex Gaussian random process. We appeal to  Huyghen's principle18 to represent  the 

incident noise sources by the superposition of equivalent sources distributed over a 

sphere surrounding the receiving antenna. Each point on this sphere of radius Z radi- o 
a tes  a spherical wave of appropriate amplitude, a s  illustrated in  Fig. 8. Formally, we 

--L 4 

write the net input noise a s  n(r ,  t )  where 

J 

hemisphere 

where is a unit vector f rom the origin in the direction of (Zo, 0, +), t o  is the time a 
4 

wave had to leave (Zo, 0, 6 )  to reach r a t  t ime t, and dN(B, to) is a Stieltjes differential. 

Choose Zo t o  be large enough that the following approximation is valid 

Also, take Zo large enough that the spherical wave that propagates in the direction F 
is essentially a plane wave a t  the receiving aperture with its E vector randomly polar- 

ized in the plane of incidence. 

z - ~  = attenuation of the spherical wave amplitude with distance, 
0 



Fig. 8. Equivalent source distribution for background noise, 
using Huyghen's principle. 



4 A 

dz(f ,  F) = i a ( P )  dZ(f, F), and 

A A 

i ( p )  is a unit vector in the direction of the electric field of the noise component incident a 
A 

from the direction (3. 

The covariance function is evaluated by the f ollowing integral : 

4 

Now to work out some geometry. E p is a vector in R2 of magnitude p a t  an angle tf, 

with respect to the x-axis, 

A & 

p p = p s in  8 cos (5-+) f o r  z z 0 ,  0, +) 

4 4 -  

p . i a ( p )  = p cos 0 cos (eta-+). 

Equation 28 gives an expression for  the covariance function between vector functions a t  

any point in space. It is meaningful because we assume that orthogonal noise polariza- 

tions a r e  statistically independent. But we wish to modify these resu l t s  so  that the covari- 

ance reflects only that part  of the noise process  that propagates a t  normal incidence to  

the receiver  aperture. F o r  that reason, we project the noise vector onto the a rb i t ra ry  
A 

vector p in the receiver  plane. The vector can be arbi t rar i ly  chosen because the noise 

sources a r e  assumed to  be randomly polarized in the propagation direction. 

A A 

Rn(t, r ,  t l ,  r ' )  = e - - SS I 
= SS ei~r(f tO-f ' tOl)  * 

~ [ c o s  0 cos 6' cos (Sta-$1 cos (Stal-$11 d ~ ( f .  $ d~ ( f l ,  ?)I. 
v 2  

( 3 0 )  
Now make the following assumptions : 

1. The expectation over the random polarization angles a, a '  is independent of the 

other averaging; a and a '  a r e  independent and uniformly distributed over an interval 

length 2 ~ .  
hk 

2. dZ(f, P )  is uncorrelated with dZ (f1P'), except for  f '  = f and P '  = P. In other words, 

there is no correlation between noise components a t  different points on the source 

sphere, o r  a t  different frequencies. 

Accordingly, we se t  



( a )  E [ d ~ ( f ,  F)dz*(fl, p) ]  = S(f, F) 6(f-f') 6(P-P') dQdnl  dfdf', 

where dS2dS2' a r e  differential spherical angles, and S(f, 9 is the noise power spectral  

density at  each angle (3. 

where the average is over the random polarization angle a. 

Substituting these expressions in Eq. 31, and performing the integration over R ' ,  f ' ,  

and $, we obtain 

& 

Rn(t, r ,  - t r ,  r ' )  = - 2 Z o 11 e x p & Z d ( t - t l t ;  ( r - r )  ~ ( f , ~ c o s ~  O drdn "-)I 
dn = Z: s in  9 d8d$. ( 3  1) 

We must assume some functional form for  the dependence of S(f, F) on the direc- 

tion In this analysis we make the simplest choice, that is, se t  S(f, F) = S(f), inde- 

pendent of F. By using Eq. 29, Eq. 3 1 reduces to 
4 4 

Rn(t, r ,  t ' ,  r ')  = 

IT/2 1 J df ei2d(t-t') ~ ( f )  J cos2 e s in  e cIT eq[? ( X )  sin e cos (I-$ 2 0 

IT/2 2 
= n J c l f e  i21Tf(t-tt ') S(I) J cos 0 s in  B J~((%) IF-? I )  de. 

0 

Now observe the following identities 

~ " r ( ~ t i )  
Jniz s i n e )  s in  out' C O ~ ~ ~ ~ ~  O dB = 

z v t l  Ju+v+l(z). 

Substituting in Eq. 32 p = 0, v = 1/2 yields 

- 4 

(21if IF-;' 1 )  J3/2 7 
~ , ( t ,  r ,  t l ,  rl) = li J' ~ ( f )  ej21T(t-t') ,,/$ df. 

A 4 3/2 (gf lr-rf 1) 

Finally, the bracketed t e r m  can be rewritten in  t e r m s  of elementary functions, s o  

that Rn(t, F, t ' ,  F') becomes 

2lTf - -  - A j21~f(t-t') s in  - Ir-r'I cos lr-r'l 
Rn(t-tt,r-r') = R(T, d)  = IT c A A - c 3 af l r - r l / 2  A -L . (33) 

C 



Equation 33 can be integrated for  certain interesting noise spectra,  S(f). If ~ ( f )  = NO/4a, 

0 G f G co, then 

= 0 otherwise. 

This i l lustrates the point that R(T, 0) - co if we assume that the distributed noise sources 

a r e  temporally white. This singularity is removed if we assume that the input noise is 

bandlimited. Let S(f) = N ~ / ~ I T  for 0 s f fo, and be zero  elsewhere. Then 

s in x cos 21~f T T C  s in  x s in  2~rf T 
- 0 t 0 

X 
2 dx 

+ ~ ( I - [ ~ ~ ~ ) ( S ~ X ( ~ + $ ) ~ S ~ X ( ~ - ) )  2 f o r  ~ < d / c .  

J 

where x = 2afod/c = Zaf d / f ~ ,  and 
0 

si( y )  = 1 s in  x/x dx. 
0 

Childers and ~ e e d ~ '  have studied the function R(T, d) that is defined by (34). They 

point out that R(T, 0) remains finite for  a l l  T,  and R(0, d) decreases  monotonically, with 

d going ultimately a s  1 /d. Therefore, for  broadband optical noise, with fo/f of the 

order  of unity, R(0, d)  decreases  rapidly a s  d gets large compared with the wavelength. 

This is the justification for  modeling the noise a s  white, in comparison to the sig- 

nal process. 

3, 2. 2 Random Coding Bounds for Paral le l  Channels 

Recall that we can obtain a parallel  subchannel representation of the communication 

channel when Rn(t, r. t f ,  rt) is of the fo rm given by (34). It is natural to  ask just how one 

may design the channel inputs to  take advantage of this property. 

We have shown that there exists a se t  of waveforms jN(;' t )  a t  the t ransmit ter  with 
4 

the following properties:  ( a )  each jN(r,  t )  is transformed by the channel into one of an  
A 

orthogonal set  of functions eN(r,  t )  on the receiver  aperture,  and (b)  the projections of 

the additive noise field on the e N ( z  t )  a r e  statistically independent random variables. 

These properties suggest that one t ransmit  information through the channel by ampli- 
A 

tude modulation of the j ( r ,  t). This leads to  the schematic channel representation shown N 4 

in Fig. 9a, in which x. is the modulating amplitude for  j .(r ,  t), g. is equivalent to  a chan- 
2 1 1 

nel gain, in that g, /2 is the energy in the signal component of the ith channel output when 
d 

ji(r. t )  is the input: and ni is the additive noise projection on the ith receiver  coordinate. 

We revised the model to  the equivalent form of Fig. 9b in which the channel gains a r e  



0. = x.g. + n. 0.' = X. + n'. 
I I I  I I I I 

(0) ( b )  

Fig. 9. Model of parallel  channels. 

included in the noise variances. 

Each one of M sources messages is t o  be represented by an  N-tuple of amplitudes 

(xij, xNj) that modulate their  respective subchannels. We can answer two questions: 

If one has only a limited amount of signal energy, how should i t  be divided among the 

N subchannels ?, and What is the performance with this optimum division ? 

It can be shown that for best performance one should choose a s e t  of M code words 

in the following manner9: For  each message m .  choose the amplitudes xij f rom indepen- 
J 2 2 

dent zero-mean Gaussian distributions with variances ui . The appropriate values of Ti, 

and the resulting performance a r e  given in parametr ic  form below. 

iT2 + N. = N 
i 1 b  i in the se t  ib 

u2 = 0 
i i not in i b' 

Let u s  explain these results. F i r s t ,  observe that Pe means the probability that one 

will incorrectly decide which of the M possible messages has been transmitted. Ebert  



presents an upper bound to this e r r o r  probability. This reflects the random coding 

approach, in that we a r e  assured that there is at least one code set for which the aver- 

age e r r o r  probability is l e s s  than the upper bound, which is the average e r r o r  proba- 

bility over the class of codes. 

We can also derive a lower bound to P which is exponentially the same a s  E for e 
high rates R, and close to E for lower rates. Inasmuch a s  the e r r o r  probability is 

dominated by the exponential, these bounds pin down optimum performance tightly. The 

exponent is a function of several parameters that a r e  defined a s  follows: 

R = the rate a t  which information is produced by the source. If the source output 

is one of M equally likely messages, then R = In M (nats/channel use).  

S = energy available for signaling in the T-sec interval. 

S = TP, where P is the average power produced by the source. 

p = a f ree  parameter, in the interval [0, 11. We choose p to maximize the expo- 

nent E, for each value of R. 

N = an energy level that is computed a s  a function of p, S and the variances of the 
b 

noise on each subchannel. 

The relations among these parameters a r e  complex: for a fixed value of p ,  

with 

From (36a) we compute Nb for each value of p. The set  {N~} includes the Ni in order  

of increasing magnitude up to  the largest Ni G Nb. Having a value for Nb, we com- 
max 

pute the rate R, according to 

Having these quantities, we define the exponent by 

It i s  possible to maximize E over p. If this optimum occurs for 0 < p C 1, 



then E takes the form 

E the optimization requires  p 3 1, we s e t  p = 1, and 

We can represent  these resu l t s  graphically a s  shown in Fig. 10. The value of E[O] 

is given by (36e) with R = 0. The exponent ( a s  a function of R) decreases  l inearly to  a 

R~ C R (nats/channel use) 

C = channel capacity 

R = cri t ical rate C 

Fig. 1 0. Exponent EU(R) for  random- coding 

upper bound. 

value R CRIy where i t  follows (36c) a s  p -- 0. The maximum value of R fo r  which 

E[R] is positive is the channel capacity, C, obtained by setting p = 0 in (36a 

and 36b) 



Thus, if a l l  Ni a r e  equal, we have the familiar resul t  

where Do is the number of available subchannels. We shall  continue to  apply these 

resul ts  to our  model of the optical channel. 

3 . 3  EXAMPLE 

We shall  work one specific example to i l lustrate the computation of the bounds pre- 

sented in section 3. 2. 

Suppose the transmitting and receiving antennas a r e  rectangular apertures  oriented 

perpendicular to the z axis ( s ee  Fig. 11). Let the apertures  be separated by a dis- 

tance 2, and have the dimensions (2Lx,2 L ) and (2 Lk, 2 L' ) in  the (x, y) coordinates, 
Y Y 

z = o  z = z  
Fig. 11. Rectangular-aperture antenna system. 

respectively. Radiation f rom the t ransmit ters  propagates along a "free- space" path 

to the receiver.  We assume that a l l  noise sources a r e  adequately modeled by the 

"essentially white" process  discussed above. It follows that we can select the t rans-  

mitted signals to  provide for  parallel  use  of independent subchannels. These fundamental 

t ime-space modulation patterns a r e  eigenfunctions of Eq. 8, a s  discussed in sec- 

tion 2. 2. F o r  rectangular apertures  each eigenfunction solution separates  into a product 

of functions that vary  along one of the orthogonal directions (x,y). These one-dimensional 

waveforms a r e  eigenfunctions of the prolate spheroidal equation. 



F o r  convenience, we shall  evaluate performance for  a system with modulation along 

only one spatial axis, for  example, the x-axis. This simplifies the computation of e r r o r  

bounds; however, the computation procedure is directly applicable to  the two-dimensional 

case. 

Performance evaluation of the optimum signaling scheme does not require  knowledge 

of the functional dependence of the transmitted messages on time and spatial variables. 

What one does need is the se t  of eigenvalues associated with this s e t  of eigenfunclions. 

Therefore, a significant part  of the analysis is to  find a convenient analytic representa- 

tion for  the eigenvalues. This is not usually possible for  a rb i t ra ry  integral equations. 

A resul t  is possible in this case, however, because of Slepian's intensive study of the 

prolate-spheroidal wave functions. 17 

The eigenvalues of the prolate-spheroidal equation a r e  specified by a single param- 

eter ,  D, where in our notation 

We wish to  estimate the nth eigenvalue Pn(D). F o r  n c D, p (D) is approximately unity; n 
for  n > D, Pn(D) approaches zero. As D increases,  the transition between these 

extreme values becomes narrower,  a s  indicated in Fig. 4. Inasmuch a s  n takes on only 

integral values, this figure indicates the envelope of spatial eigenvalues. Let US pro- 

ceed to find an analytic approximation to the envelope function. 

slepian17 has  shown that for  D of the order  of 10 o r  greater  we can write 

where bn is obtained by a graphical process. This result ,  together with the sharp 

decrease of p in the vicinity of n = D, suggests the following approximation n 

where a is to be determined a s  a function of D. One property of the pn is that 

Now substitute Eq. 38 in Eq. 39 and observe that 



which follows by bounding the envelope by a "s taircase" function whose value is 1 /1 + 
a(n.-D) 

1 e , in the interval ni C n =s n. + 1. Performing the integrations yields 
1 

As D increases,  the sum approaches closer  to  D, a s  required. Graphical work based 

on Slepian's analysis, and unpublished notes by ~ a l l a ~ e r ~ l  suggest that we take 

The final approximation is 

We can then proceed to  evaluate the ra te  reliability curve presented in section 3.2.2. 

3. 3. 1 Computation of Rate-Reliability Curve 

Recall that the f i r s t  s tep in evaluating the rate-reliabili ty curve is to  compute ib, 

the number of subchannels that will be used a t  any particular rate. Let 

S = available energy (J) 

No - = background noise power density ( ~ / ~ z / s p a t i a l  degree of freedom) 2 

Ni = N0/2pi = effective noise power on the ith subchannel 

9 F r o m  Ebert  we obtain ib a s  the value of the index i such that 

Define 

Then 



As before, we approximate the sum by an integral to get the following result (see 

Appendix C). 

As an example of how one solves this equation consider the limit a s  p - 0. The equa- 

tion reduces to 

Now e-aD is a small number compared with eb - 1. Thus 

2 Now a-' = In 2 n ~ / n  , which should be small compared with ib so  we shall ignore it also. 

It remains to solve for $. We recast (42) a s  follows 

t where t = aib. When x is large, the equation t e = x has the approximate solution 

t = In x - In (In x) 

The point p = 0 is especially interesting because it is associated with the chan- 

nel capacity. We can use the approximate solution for p = 0, given by (44) for 

a wider range of p and eb. We show (Appendix C) that for  small p, Eq. 41 can 

be reduced to 



Then 

where cb is large compared with unity, so Eq. 45 reduces to 

which is in the same form a s  (42) with an increased noise power, Nd = (1 +p)No. Similarly, 
2 when p(eb-1 )/Eb is small, we can use (42) with Nb = (1 +p) No. 

Having Nb, we can compute the three numbers that characterize the typical E(R) 

curve. These a r e  

R( p = O )  "Capacity" 

R(p=l ) Rate at which E(R) enters the straight-line region 

E(0) Exponent a t  zero-rate. 

We find that there a r e  two interesting conditions for computing these numbers according 

to whether ib is greater than, or  less  than, D. We shall defer discussion of this point, 

in order to  make the results available immediately. The detailed computation is included 

in Appendix 6. 

Observe that b 3 D when 

Thus, for a given value of ~ S / N ~ ,  k is larger  the more slowly the eigenvalues decrease 

towards zero. 

2 a S/No 

a natsjchannel use 
a D + l n -  

*o 



S 1 
E(0) = - S 2No 1 t 1 as N D t-ln- o aD No 

3. 3. 2 Interpretation of Results 

Our analysis shows that the optical channel can be modeled by a se t  of independent 

subchannels, indexed in order of increasing noisiness. Inasmuch a s  the nth channel is 

noisier than the (n-1 )th, it is not surprising that, a t  any rate R, only a finite number 

of subchannels is used. In particular, the noise increases rapidly for n 3 D, which sug- 

gests that i t  takes increasingly larger  increments of available signal energy to make it 

worthwhile to add an additional channel in that region. In certain laser  applicatio~ls, 

however, the available energy is large enough to suggest using more than D subchan- 

nels. This then bears  directly on the issue of defining the concept of "degrees of free- 

dom." Consider the following example: Suppose one is operating a communication link 

via a CQ2 laser  beam over a 2 -km path. Day or  night, the principal noise source at 

10 p is thermal radiation from the earth at an effective temperature of 283°K. [Note 

that we a r e  ignoring quantum noise inherent in heterodyne detection o r  linear amplifi- 

cation. If this noise is included, the signal-to-noise ratio decreases by approximately 

two orders of magnitude.] Let the following parameters define the system. 

2 s = 10 w x  sec = low4 J 



We substitute these values in the following equations to compute N /2, D, and a. 
0 

where 

Observe that 2S/NO, the signal-to-noise ratio, is of the order of 1 0 ' ~ .  This is so 

high that we expect to be able to use many additional degrees of freedom beyond D = 6. 

Therefore, we solve for ib using Eq. 46, which is valid when e is large. The solution b 
for % is given by modifying Eq. 44. 

1 2aS 
ib = D +-;E-ln 

(l+p)No 
2aS aD + ln- 
No 

Let us compute i for the capacity rate, p = 0. b 

If we change D by varying any one of the parameters, Lx, Lk, or  Z,  holding all 

other parameters constant, we find that 

( a )  for D = 10 % = D + 1 5 = 2 . 5 D  

(b) for D = 64 ib = D + 22.6 = 1.3 D. 



These computations i l lustrate the fact that the transition region between large and small  

eigenvalues becomes relatively narrower a s  D increases. Thus, as D increases  fo r  

a fixed signal-to-noise rat io  there is a decrease in the number of dimensions used, 

expressed a s  a percentage of D. 

We wish to  emphasize that there is a significant potential for  using additional spatial 

degrees of freedom when D is moderate, say, of the order  of 10. The example above 

il lustrates one reasonable se t  of system parameters  for which the technique is 

promising. 

We have discussed a situation in which the signal-to-noise r a t e s  a r e  high enough 

that the use of ib > D degrees of freedom is indicated. Let u s  look back to  interpret 

the meaning of the signal-to-noise rat io  for  which ib = D. Let u s  look a t  the signal dis- 

tribution a t  channel capacity, p = 0. F r o m  Eq. 44, ib = D if 

S -- 1 a s  - 1 t-ln-.  
NoD aD No - - 

2 2 

F r o m  (47) we s e e  that for  large D we distribute signal over the f i r s t  D coordinates 

when S is large enough that the signal-to-noise rat io  per  dimension is unity. As S 

increases  further,  we use  more  dimensions. F o r  moderate values of D, more energy 

per  dimension is necessary because the noise power begins to increase rapidly in the 

vicinity of n = D. 

We expect that the radiation channel behaves like the bandlimited white Gaussian 

channel whenever ib G D and D gets large, since the noise power is essentially equal 

on the f i r s t  D channels. Refer t o  the resul ts  a t  the end of section 3. 3.1 and observe 

that for  small  values of ~ S / N ~ D  

R(0) 4 s/N0 nats/channel use 

R ( l )  + s / ~ N ~  nats/channel use 

which confirms our expectations. 

When ib > D, the signal-to-noise rat io  on the l e s s  noisy subchannels will exceed 

unity. This suggests that there is not enough "bandwidth" t o  use these channels effi- 

ciently; consequently, R(0) should be l e s s  than the "infinite-bandwidth" channel capacity 

which is s / N ~ .  Refer back to our expression for  R(O), and note that 



where we have used the inequality ln  x -C xl", for  x 2 I. 

t (Dt .5)  a ( ~ ~ ( a ~ t 1 n  2as/N0)/2as) 
R(0) G - 2 a s  aD t ln- 

No 

G S/N0, a s  expected. 

Up to  this point in our  discussion we have assumed that the available signal energy 

is distributed among a set  of subchannels characterized by the spatial dependence along 

one polarization component. This argument can be modified t o  account for  two factors  : 

(i) the potential to  specify the subchannels along the perpendicular polarization, and 

(ii) the use of temporal degrees of freedom associated with signaling for  a T-sec inter- 

val with a bandwidth of W Hz. 

Each of these factors acts  to make available extra  degrees of freedom for  each orig- 

inal spatial dimension. By analogy with our study of the variation of i with D, it b 
follows that when TW is large (a factor of 1000 is not exceptional), there  a r e  essentially 

2 T W  independent temporal subchannels, each having the same noise power. This sug- 

gests  that the power in each spatial  degree of freedom should be equally divided among 

2 TW temporal modes. The net effect is to  reduce the signal-to-noise rat io  per  dimen- 

sion in a manner to  more  closely approximate the infinte-bandwidth signal energy dis- 

tribution. This point will be  t reated in grea te r  detail. 

Fig. 12. Variation of i with signal-to-noise ratio.  b 

Finally, let  u s  i l lustrate how ib var ies  with the signal-to-noise ratio. We shall  use  

this resul t  in our discussion of visual acuity in Section IV. We have 



1 1 a s  = D --In QD +- ln-; for  2as/No <<e  aD a a No 

If we plot $, against In 2aS/No, we obtain the "sigmoid" shape illustrated in Fig. 12. 

3.4 DISCUSSION O F  RESULTS 

Spatial modulation is a means to obtain independent subchannels, where each one 

can be modulated by orthogonal temporal waveforms. The key question is to determine 

how a fixed amount of signal power should be distributed in the channel for  minimum 

e r r o r  probability in  signaling. The theory shows that the best  resul t  obtains when sig- 

nal energy is distributed to equalize the net signal plus noise energy in each subchannel 

used. The channel capacity is reached if this distribution is achieved with a minimum 

signal power in  each subchannel. F o r  these resul ts  t o  hold it does not matter  whether 

the subchannels a r i s e  f rom temporal modulation, spatial modulation, o r  both. Inasmuch 

a s  there will typically be more  temporal degrees of freedom than spatial degrees of f ree-  

dom, conventional practice is to  optimize signal distribution by using temporal modula- 

tion. If temporal bandwidth is limited, however, the spatial degrees of freedom can be 

used in effect to  multiply the bandwidth. 

When is spatial  modulation useful ? When the  temporal channel is bandlimited with 

the resul t  that one cannot conveniently meet required communication performance with 

respect  to either r a t e  o r  reliability. 

Refer back t o  the example discussed above. We did not include the effect of dis- 

tributing the signal power among 2 TW temporal subchannels in  the computation of ib. 

This is easily handled by replacing S with S/Z TW. For  example, if 2 TW = 1000, a s  

in 

T = 1 o - ~  s e c  

9 2W = 1 0  Hz, 

and we recompute i for  D = 6, we find ib = 6 + 11.4 c 3D. In this instance, the signal- 
b 

to-noise rat io  is s o  high that the additional bandwidth made available by using spatial 

subchannels is not enough to  attain the "infinite-bandwidth" channel capacity. More 

"bandwidth" is available by using the orthogonal polarization component. The net resul t  

is that the temporal bandwidth can be multiplied by the product of the degrees of f ree-  

dom in the x and y directions. 

In the course of our analysis we have found that "degrees of freedom" is a central 



concept. We have observed that the conventional definition concentrates only on repre-  

sentation of signals, and does not consider additive noise processes;  the number cf 

degrees of freedom depends only on the geometry of the aperture system and the signal 

wavelength. In contrast, we have followed a statistical approach that recognizes the 

effects of noise on signal processing. We have illustrated, by example, that when the 

signal-to-noise rat io  is high enough, we may use f rom one to  ten t imes the convention- 

ally computed numbers of degrees of freedom t o  achieve the most reliable t rans-  

mission of data. 

These divergent views on the number of degrees of freedom a r i s e  in par t  f rom the 

way degrees of freedom a r e  originally defined. Gabor, for  instance, counts the maxi- 

mum number of physically disjoint spots on a receiving aperture which a r e  images of 

physically disjoint spots on the transmitting aperture.  His notion of disjoint is that there 

is only an E amount of signal energy in regions where spots overlap. In our analysis 

we have counted the number of orthogonal patterns at  the t ransmit ter  that give r i s e  to  

orthogonal patterns a t  the receiver.  This is immediately appealing because i t  allows 

us  t o  use the whole input aperture to shape each spatial  mode. Analysis shows how each 

mode is attenuated by the channel. The utility of a mode depends on our ability to  mea- 

su re  its strength in  an  environment. Therefore, the number of useful modes depends 

on available signal energy and noise power density. 

3.4.1 Quantum Noise 

The additive noise in our  channel model a r i s e s  f rom sources that a r e  independent 

of the communication process. At optical frequencies, however, we must also consider 

quantum noise that is apparently inherent in measurements made a t  the receiver.  

The way that quantum noise is produced depends upon the details of the measurement 

process. Quantum processes  produce the effect of additive Gaussian noise a t  the output 

of heterodyne detectors, and coherent wave amplifiers.5Z In both instances the power 

spectrum of this noise is given by hf/2 J/HZ. Fo r  a C02 l a se r  operating a t  10 p, 

hf/2 is approximately lo-" J, thereby exceeding thermal  background noise by two 

orders  of magnitude. Clearly then, we must make explicit the sense in which our analy- 

sis can be interpreted to predict bounds on the performance of communication systems. 

Our model is appropriate when the quantum noise is relatively small. If background 

noise is of thermal  origin a t  283"K, this is the case for  frequencies of the order  of 4 X 

10'' Hz, o r  lower. For  higher frequencies, where quantum noise is significant, we 

can make a simple modification of the analysis t o  predict the performance of one inter- 

esting class  of receiver  processing. We showed that the optimum processing for  

signals in thermal  noise could be implemented by a baseband correlation on the output 

of a heterodyne detector. The quantum noise in heterodyne detectors has  Gaussian sta- 

t i s t i c ~ . ~ '  Inasmuch a s  it is created in the measurement process,  i t  is essentially 

'%hitel' with respect  to spatial variations. The quantum noise a l so  appears white over 

the narrow bandwidth (not more  than 10% of center frequency) that is characteristic 



of the applications we have described. Therefore, all results derived for thermal noise 

apply to quantum noise arising in heterodyne detection, with the modification that No is 

replaced by No + hf. 

There happens to be an additional benefit from recognizing the presence of quantum 

noise in this system. Observe that spatial modulation becomes more attractive as  D, 

the number of available degrees of freedom, increases. D is  directly proportional to 

the frequency; quantum noise power also r ises in direct proportion to frequency. It 

follows that the analysis will not predict continued improvements in performance a s  one 

goes to arbitrarily high carrier  frequencies. 

In one respect our analysis is limited. We cannot assert  that the heterodyne- 

correlation receiver performs optimum processing of signals corrupted by quantum 

noise. The specification of optimum receivers, however, may require measurement 

of variables that have no tangible physical meaning.48 Among the set of receivers 

that make physically realizable measurements, receivers that make linear field mea- 

surements (heterodyne plus correlation type), or quadratic (energy) measurements, 

or that combine these operations, have been most thoroughly explored. It has been 

shown that the field-strength measurement is optimum when the input signal i s  strong; 

energy measurement i s  superior when signal levels are of the order of tens of quanta 

per event. 53 

Let us look at the distribution of signal energy in the various subchannelis for 
2 spatially modulated signals. Let the average energy used on the ith channel be oi, 

where 

We have CJ? 2 of for all i; hence, for most typical values of aD we have 

For a fixed value of S and D it  follows that 

Similarly, for fixed values of S and No 

lim U. 2 S  =- 0 i G D. 
D-., ' D -  



Both of these l imits  indicate that optimum performance is characterized by distributing 

an  E amount of signal energy in each of a large number of subchannels. In this limit- 

the signal energy per  subchannel is small  enough that energy detection may be superior 

t o  a field-strength measurement. The computations in section 3. 3. 2 show that with real-  

istic parameter  values, there is not enough bandwidth to achieve the l imit distribution. 

Theref ore  we have been principally concerned with optimizing performance under con- 

ditions of strong signal on each mode. In this case the l inear receiver  is probably the 

realizable receiver  that performs a s  well a s  possible in the given signal and noise envi- 

ronment, We cannot claim now that it is optimum. Indeed, if one chooses system 

parameters  to  satisfy performance specifications using the minimum signal power per  

bit of transmitted information, then the optimum receiver  may use an  energy detector. 

The crosscorrelation performed on the channel output is in effect a point-by-point 

operation performed ac ros s  the receiver  aperture,  that is ,  integrated t o  produce the 

decision variable. In some circumstances it may be desirable to implement a sampled 

version of this operation; that is,  to use  samples of the input field strength averaged 

over small  disjoint a r e a s  of the aperture. The signal energy per  sample is reduced by 

this operation and may become low enough that i t  is no longer optimum to  form a linear 

combination of the measurements. 

To summarize the argument, we claim that heterodyne detection is optimum for  car -  

r i e r  signals a t  frequencies of 10'' Hz o r  less .  F o r  higher frequency ca r r i e r s ,  in par- 

ticular, the near infrared and optical heterodyning appears t o  be the best realizable 

operation when the signal energy per  measurement exceeds tens of quanta. Finally, quan- 

tum noise ar is ing f rom the heterodyne measurement can be treated within our analytical 

framework by changing the s ize of one parameter,  namely the average noise power dens- 

ity spectrum. 



IV. OPTICAL INFORMATION PROCESSING SYSTEMS 

The signal representation developed in Section I1 is well suited for analyzing the 

application of spatial modulation to digital data transmission. The e r r o r  bounds dis- 

cussed in Section I11 a r e  computed for  the parallel-channel model that is derived from 

this signal expansion. We shall now show how these results can be interpreted to assess  

the performance of three optical information processing systems, including communica- 

tion links that use spatial modulation, super-resolving microscopes, and the visual 

acuity function for humans. 

We shall discuss the application to information transmission systems first. Let us 

summarize the significant characteristics of signals that use spatial modulation. 

(a)  Each spatial mode is equivalent to a car r ier  that can be independently modulated 

over the entire available transmission bandwidth. For  present technology the signaling 

bandwidth is not practically limited by characteristics of the propagation channel. 

(b) For  moderate values of the signal-to-noise ratio (SNR) the number of useful 

spatial modes is D, the classical number of degrees of freedom. 

(c) For  higher values of the SNR additional spatial modes can be used effectively. 

The larger  is D, the smaller is the percentage increase in useful spatial modes. The 

relation between D and the physical parameters of the antenna system was shown to be 

F o r  typical values of A1 and A2, D exceeds unity only for signaling at optical frequencies 

and for antenna separation (Z) of the order of a few tens of miles o r  less.  

In order  to apply this analysis to the use of spatial modulation a t  optical frequencies, 

we assume that the signal transforming property of the channel is adequately modeled 

by a linear time-invariant filter. A communication system based on coherent detection 

is feasible only in turbulence-free environments such a s  deep space, the lunar surface, 

waveguides (for example, fiber-optics) and enclosed volumes (for example, internal to 

a computer). This excludes application of signal design a s  discussed here to cornmuni- 

cation through the Earth's atmosphere at optical frequencies. Atmospheric turbulence 

imparts random variations to  the phasefront of an optical signal that destroy the assumed 

spatial coherence over large areas. The significant consequence for  our analysis is that 

orthogonality of transmitted signals is not guaranteed at the output antenna. In the pres- 

ence of turbulence this orthogonality can be obtained only by producing nonoverlapping 

beams at the receiver. To the extent that turbulence does not substantially diffuse these 

beams, the number of orthogonal beams attainable by this alternative technique is given 

by the number of degrees of freedom a s  defined by Gabor." This is a sharp upper 

bound, independent of the prevailing receiver SNR. 

Returning now to signaling over nonturbulent channels, we can cast out deep-space 

communication a s  a likely area  fo r  sophisticated application of this analysis. The 



distance between source and receivers is likely to be so  large that each one looks like a 

point source to the other. For  shorter ranges one might consider simple low-rate sys- 

tems, for  example, transmission of patterns between an astronaut and his vehicle. 

Communication across the lunar surface seems to be a natural application for this 

tlechnique. We expect that radio propagation beyond the horizon is limited to long surface 

waves that a r e  inherently narrow-bandwidth car r iers .  This makes optical line-of-sight 

propagation an attractive alternative for light-weight low-power signaling at high data 

rates. In typical operation the number of useful modes will be small compared with the 

temporal bandwidth. In this circumstance the spatial modes a r e  used most effectively 

to extend the temporal bandwidth. This may be especially useful if temporal bandwidth 

is limited by the necessity for  providing light-weight, low-power, communication equip- 

ment. For  example, several television signals might be multiplexed onto optical 

car r iers .  

The applications discussed above a r e  characterized by a small value of D compared 

with the number of temporal degrees of freedom. On the scale of small separations 

typical of a computer, however, D becomes very large. For  example, let R1 and R2 

be square ar rays  and 

Then 

In this instance, D is substantially la rger  than the TW product for signaling in current 

computers, where nsec logic is in the state-of-the-art stage of technology. We do not 

believe that there is a realistic application of this information-carrying potential to 

increase the speed of machines for sequential computation because electrical pulses 

propagate through the computer at nearly the speed of light. Internal communication is 

slowed principally by stray capacitance that limits the rate at which circuits can be 

switched. It seems clear that the switching networks for  optical pulses would also be 

affected to the same extent by capacitive delays. There may be, however, a practical 

application of optical signaling to machines that a r e  organized to  do parallel computa- 

tion. It also appears to be logical to consider using optical methods to create a large, 

efficient, "read-only" memory suitable for storing tables and other data that change 

infrequently. 

Recall from property (c)  that for large values of D there is a relatively small  



incentive to take advantage of large SNR to use more than D spatial modes. This 

euggests that we use the nonoverlapping beam approach to synthesize the storage system. 

The optical readout would then be scanned over an image plane containing the projection 

of these bearns. In principle, information can also be stored in the intensity of each 

elementary beam, but there a r e  two reasons for  believing that binary ON-OFF modula- 

tion would be most suitable. 

(a)  Binary arithmetic is the fundamental operation in most computers. 

(b) D may be large enough to approximate the "infinite-bandwidth" condition. In that 

case, each independent beam (parallel channel) can be modulated by short binary pulses 

that a r e  coded to achieve essentially optimum performance, measured by bounds on the 

digital e r r o r  probability. 

These examples indicate our feeling that there a r e  only limited applications of spatial 

modulation to the design of information transmission systems. Furthermore, in these 

most promising applications (lunar surface communication and computer memories) we 

have not proposed that spatial modulation be used in a manner that is more sophisticated 

than prior techniques. We believe that the value of this analysis is to set standards for  

optimum performance against which, a s  it turns out, conventional systems may perform 

quite satisfactorily. This should give u s  more confidence to proceed with those 

approaches. 

We now consider two imaging systems in which the desired output is a faithful repro- 

duction of an arbitrary source image. 

4 .1  SUPER-RESOLUTION IN OPTICAL MICROSCOPES 

The classical statement of the resolving power of a microscope has been given by 
5 5 ~ b b e . ~ ~  Consider the geometry (after Jenkins and White ) illustrated in Fig. 13. Two 

point sources a r e  imaged by the objective lens into annular ringed diffraction patterns 

centered on I and I', respectively. The diffraction pattern centered at I' is said to be 

object plane 

a L 
objective 

Fig. 13. Resolving power of a microscope. 
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resolved if i ts  f i rs t  null i s  located at I. This null occurs at a distance of 1. 22X 

for spherical lenses. If the distance between 0 and 0' is S and + is the angle that -the 

objective subtends from the object plane, the path difference between rays O'AI and O'BI 

is approximately 2S sin +. Now setting 1.22X = 2s sin +, we get the condition for mini- 

mum resolvable points a s  

s 3 1.22X 
2 sin + '  

We presume that 0' and 0 a re  incoherent self-luminous point sources. Abbe's work 

showed that for arbi trary illumination, a good estimate is 

s 3 X 
2 n sin +' 

where n is the index of refraction of the medium between the object and the objective 

lens. A maximum practical value of n sin + is given in Jenkins and to be 1.6. 

Therefore, classical analysis suggests that the smallest resolvable distances a r e  of the 

order  of X/2; in other words, the Abbe limit states that for incoherent sources, spatial 

frequency components higher than 2/X cannot be resolved. For  coherently illuminated 

sources the frequency limit is 1/X. 

There have recently been several proposals for  signal-processing techniques to 

exceed this limit. All of these a re  based on using a priori knowledge that the source 

objecthas known finite dimensions. The Fourier transform of a finite source is an 

entire function and, in principle, can be reconstructed from measurements on any finite 

interval. This property has led to proposals for "supergain" optics based on extraction 

of these expansion coefficients. The essential task here is the estimation of a parameter 

from a noisy signal. If the noise is adequately characterized as Gaussian and spatially 

"white1' compared with the signal, then each coefficient can be estimated independently 

of the others, according to familiar techniques. Having no advance knowledge about 

the source, the optimum procedure is to correlate the image against a replica of the 

coordinate in question, averaging a s  long a s  possible to minimize the variance of the 

estimate. This approach has been suggested, but it seems that implicit assumptions 

have not been recognized. Two points require comment. 

1. Typical detectors for optical imaging systems respond only to positive inputs, 

such as  incident energy. Therefore conclusions based on a system that assumes the 

ability to operate on field strength rather than on power a r e  not directly applicable. 

These analyses may, however, suggest new approaches in processing optical data. 

2.  In any specific situation there may be special characteristics of the source object 

o r  the additive noise that can be used a s  a priori information to apply more effective -- 
methods of parameter estimation. In particular, the noise added in an optical instru- 

ment may not be spatially white compared with the source object. 

With these considerations in mind, let us  look at the suggestion put forward by 



several authors who observe that masking the source with an aperture is equivalent to 

multiplying the source distribution by a binary (0, 1) transmission function. The light 

distribution in the back focal plane of the objective lens is the Fourier transform of the 

spatially modulated source. This, in turn, is the convolution of the transforms of the 

source and the modulation. The lat ter  transformation is of infinite extent; hence, even 

at frequencies l e s s  than l/k, the convolution contains detail about spatial frequencies in 

the source for frequencies higher than 1/k. Some of this information, in principle, can 

be recovered by sophisticated processing of the light at the r e a r  focal plane. The tech- 

nique is essentially the same a s  applying the inverse filtering to recover the input to a 

linear filter. (In this case, this is the Fourier transform of the source.) Our experi- 

ence with signal processing makes it clear that this is a nonoptimum estimation proce- 

dure, and one that is particularly sensitive to distortion by additive measurement 

noise. 

Another approach, which also turns out to be limited by i t s  sensitivity to additive 

noise, is based on representing the source object by an expansion in prolate spheroidal 

wave functions. Recall that the prolate spheroidal wave functions a re  orthogonal and 

complete on the space of bandlimited functions, and that their extensions to infinite 

limits a re  complete on the space of time-limited functions. It follows that a spatially 

limited object can be reconstructed with arbitrary precision, from expansion coefficients 

that a r e  computed by projecting its image on the r e a r  focal plane of the objective lens 

onto the prolate spheroidal modes. This technique requires no pupils o r  other apparatus 

that intervenes between the object and i ts  Fourier image. Its particular attraction is 

simplicity in estimating the expansion coefficients. Its history is brief, being confined 

to  the work of ~ a l t h e r ~ ~  and ~ r i e d e n . ~ ~  Although Frieden has presented the basic 

mathematical analysis, i t  appears that he has not adequately distinguished between 

intensity (which is always positive-valued) and field strength (which may take on nega- 

tive values). Inasmuch a s  the technique is on solid ground analytically, we proceed to 

evaluate its potential to provide super-resolution. 

Let us look along one spatial dimension, say, along the x-coordinate. The number 

of spatial degrees of freedom is Dx. 

2 Lk 
D = L  - x X X Z '  

where Lx and 2 Lk a r e  the x dimensions of the source and the image, respectively. 

Now, the f i r s t  D spatial modes have nearly al l  of their energy concentrated within the 
X 

frequency passband I wSl Q LVX/kz that is intercepted by the receiving aperture. Higher 

order  modes have an increasing amount of energy at higher spatial frequencies but a 

decreasing amount, equal to the eigenvalue Bn, within I ws 1. 
From their defining equation we know that the spheroidal wave function is its own 

transform. 



T/2 .-n .rrT 
in(x i  e-lrX dx = I ( ) ( )  for  all  w. 

Also, from Eq. B.6 (Appendix B), we see  that + ( t )  i s  approximately a decaying sinus- n 
oidal with the frequency D/ZT. This means that each 4 has significant amplitude for  a n 
wide range of frequencies above the aperture cutoff. Therefore we expect that conver- 

gence of spheroidal expansions for  spatial functions having substantial energy in high- 

frequency components is quite slow. Qualitatively, we have the following results.  

1. A large  number of high-order modes a r e  required to get adequate convergence 

to  the high-frequency (spatial) components of a source object. 

2. The higher o rde r  modes a r e  attenuated by a factor pn, x h e r e  p is going to  zero n 
exponentially fast  with n. Under the assumption of a fairly uniform distribution of energy 

in the spatial frequencies of the source, the SNR for  estimating the nth expansion coeffi- 

cient goes to zero along with pn. 
It does not seem worthwhile to make a computational analysis of the estimation- 

reconstruction technique at this time. The general conclusion, however, is inescapable. 

Any attempt to reconstruct the high-frequency components of the source by a s e r i e s  

expansion using spheroidal wave functions is bound to fail because the se r i e s  does not 

converge to the source in the presence of additive noise. It is t rue  that the quality of 

the reconstruction improves a s  the signal-to-noise ratio increases.  We can il lustrate 

the effect of additive noise by the following example. 

Suppose the source is represented a s  

where the {ai} a r e  expansion coefficients for the source. If the noise on the input aper- 

tu re  is spatially white, the net signal there is given by 

vvhere 

Now the {n.} a r e  independently distributed zero-mean Gaussian random variables with 
1 

the common variance N /2, arising from additive noise; the {pi} a r e  eigenvalues asso- 
0 

ciated with the spheroidal wave function; and y is a propagation constant independent 

of i. The 5. a r e  sufficient statistics for estimating the {a$, and we find that the 
1 



minimum mean-square estimatesS6 a re  {Gi}, where 

Let 

be an N-term estimate of the source. Then c .  is a Gaussian random variable whose 
1 

mean value is y a i q  and variance is N /2. Therefore 
0 

and, for any value of x, 

E[$(x)] = S(x) 

and 

Because the pi a r e  exponentially decreasing with i, it follows that the variance becomes 

unbounded as the number of te rms in the expansion is allowed to increase toward infinity. 

A more complete discussion of the variance in estimates of these expansion coefficients 

has been given by Rushforth and Harris. 4 0 

4 . 2  VISUAL ACUITY 

Visual acuity is the capacity to discriminate the fine details of objects in the field of 

view. Experimental measurements of acuity can be classified into categories based on 

four essentially different visual tasks, namely resolution, detection, recognition, and 

localization. 5 7 

The basic resolution measurement is the minimum distance between objects for the 

discrimination of separateness. The acuity grating is a typical test object. The grating 

is a row of alternating dark and light stripes which is the optical analog of a square wave. 



Each bar in the pattern could be detected if presented alone, but, when taken together, 

it becomes difficult to distinguish detail in the pattern because of pupil diffraction 

Visual acuity, in the sense of resolution, is the reciprocal of the angular separation 

between two elements of the test pattern when their images a r e  barely resolved. It is 

comparable to the "resolving power" of a telescope. 

The task of resolution has been regarded as  the most critical aspect of acuity since 

Helmholtzt experiments, in 1866. 58 One can closely correlate experimental measure- 

ments with theoretical predictions of the pattern of retinal illuminance computed from 

diffraction theory and also with the separation of individual cones in the retinal mosaic. 

Log Retinal Illumination (Trolands) 

Fig. 14. Variation of acuity with illumination (from shlaerS9). 

We are  familiar with the effect that visual acuity improves monotonically with the 

intensity of incident illumination. The fundamental experimental data that document 

this effect a r e  illustrated in Fig. 14, which is taken from a paper by ~ h l a e r . ' ~  The 

ordinate of this graph is measured in reciprocal seconds and the abscissa in trolands, 

which is a measure of power density. 

2 troland = luminance of 1 candle/m on a surface viewed through an artificial pupil 
2 of area S = 1 mm . 

candle = 4a/685 W at X. = .555 p. 

It is r a r e  in the literature on visual measurements for estimates of the background 

noise illumination to be included. The test subject is usually shielded from stray light, 

but the test object is not shielded. 

In Shlaer's experiment the source is an aperture that subtends a 4" angle at a dis- 

tance of 1 m from an artificial pupil that is a circular aperture, 2 mm in diameter. 



If 8 is the angle subtended by the bar  pattern and Do is the number of experimentally 

measured degrees of freedom in the optical system, then 

Do = 40 = 240 X visual acuity. 8" 

We see  that for  high illumination, the resolution saturates at a value of 1 . 7 ,  which cor- 

responds to a minimum angular separation of . 58 min. This checks closely with the 

prediction for angular separation based on the Rayleigh criterion, with diffraction from 

the artificial pupil being the limiting factor. 

g=--."--. 22X = -585 min, 
2d 

where d = 2 mm and X = . 555 p, the wavelength for light having maximum luminositjr. 

F o r  smaller values of illuminance, Fig. 14 illustrates the S-shaped "sigmoid" depen- 

dence of acuity plotted against a logarithmic scale. The shape of this curve reminds us 

of Fig. 12, in which we plotted the variation of ib (the number of spatial modes used in 

an optimum system) with the logarithm of the signal-to-noise ratio at the receiving 

antenna. 

We do not wish to imply that the eye processes visual inputs in the same fashion a s  

an optimum image processor. Nevertheless, i t  is valid to compare the performance 

attained when the eye and a spatial mode processor a r e  connected up to equivalent 

optical systems. We wish to see  how closely measured values of visual acuity approach 

the best values attained by optimum processing. 

It seems natural to make this comparison for the task of resolving an optical grating. 

The similarity of Figs. 14 and 12 suggests that we compare Do with the effective num- 

be r  of spatial modes in the optical channel a s  a function of the log of the signal energy. 

Recall our definition of spatial degrees of freedom: 

To  compute this number for Shlaer's experiment, observe that L ~ / Z  is approximately 

the angle (rad) subtended by the source; hence, 

and, therefore, 



/ 

(useful degrees of freedom in 
ib an optical information processor, 

480 - D = 280) 

ual Acuity (resolvable lines in on 
acuity grating; subject AMC) 

I I I I I m 

-240 -160 -80 0 80 160 240 320 log Signal-to-Noise 
Ratio 
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Fig. 15. Comparison between visual acuity and i 
b' 

1 2 3 4 log Signal Power 
lo (Trolands) 

where we have chosen a value for the wavelength to approximate maximum illuminance 

for  average brightness conditions (photopic i l l ~ m i n a t i o n ~ ~ ) .  We have computed the 

variation of ib with input SNR for  a system having D = 285. This computation is pre- 

sented in Fig. 15, together with the variation of Do taken from Fig. 14. The curves cannot 

be conveniently plotted on a common abscissa because the absolute noise level for the 

experimental data is not known. We draw the following conclusions from this com- 

parison. 

1. The variation of visual acuity with illumination is qualitatively similar to the 

variation of ib, however, 

2 .  Visual acuity saturates at a level consistent with the Rayleigh criterion, whereas 

ib continues to increase (at a slightly decreasing rate) with increasing SNR, and visual 

acuity is fa r  more sensitive to variations in SNR than ib; therefore, the analogy with an 

optical signal-processing receiver does not bring any new insight into the quantitative 

prediction of visual acuity. 

3 .  It may be that a closer correspondence can be developed between visual acuity 

and the optical bandwidth rather than the mode count ib, which is a simpler estimate 

to manipulate. 

I I I I f I I I I I I I I D 



V. CONCLUSION 

We shall briefly review the principal issues treated in this research, give our con- 

clusions about the role of spatial modulation in communication systems, and make some 

suggestions concerning further studies. 

5 .1  SUMMARY 

We have explored digital communication, using spatial modulation of transmitted 

waveforms, modeling the radiation channel by a combined time-and-space analog of a 

l inear  time-invariant filter. We choose from among the orthogonal basis systems for  

representing waveforms on the input aperture the unique set that leads to an orthogonal 

basis on the receiving aperture. The additive noise incident on this aperture is shown 

to be spatially "white," a s  compared with anticipated signal variations. Therefore, the 

doubly orthogonal basis is a natural selection for evaluating the performance of subse- 

quent receiver processing. 

The signal representation shows how the radiation channel can be modeled by the 

parallel combination of independent subchannels. We have evaluated an exponential 

upper bound on the e r r o r  probability for digital signaling over this set of parallel 

channels. This bound is interpreted to show how ultimate communication performance 

is influenced by antenna dimensions, signdl frequency, and antenna separation. We have 

drawn the following conclusions. 

5 . 2  CONCLUSIONS 

1. Spatial degrees of freedom have the same function a s  temporal degrees of 

freedom, and can be viewed a s  equivalent to independent channels bearing additional 

bandwidth. 

2. The physical characteristics of the antenna system a r e  condensed into a single 

parameter, D, which is also the number of spatial degrees of freedom in conventional 

optical estimation theory. The first  D spatial modes a r e  essentially independent of 

temporal frequency over a 10'7'0 bandwidth range. Higher order  modes a r e  independent 

of temporal frequency over a bandwidth that decreases a s  fast a s  the modal eigenvalue. 

3.  The effective number of spatial degrees of freedom is a monotonically increasing 

function of the signal-to-noise ratio at the receiver antenna. 

4. For  most ordinary applications, spatial modes should be used only when system 

performance requirements cannot be met, because of limited temporal bandwidth. For  

typical system parameters, spatial modulation increases equivalent bandwidth by a 

factor not greater  than ten. 

5. To achieve optimum communication performance, the transmitter and receiver 

apertures a r e  focussed on each other. The transmitted signals a re  selected from among 

eigenfunctions of the finite Fourier transform. These signals may be generated by 

combining the characteristic modes of an optical resonant cavity. 



6 .  Additive noise limits the effective application of spatial eigenfunction modes to 

super-resolving optical imaging systems. The quality of the reconstruction does improve 

a s  the signal-to-noise ratio increases. 

7 .  Spatial modulation may be useful in large computer storage memories. It appears 

that optimum eigenfunction modulation is not practical. 

5 . 3  SUGGESTIONS FOR FUTURE RESEARCH 

We have evaluated the performance of the optimum communication link designed for 

signaling over the optical channel that includes independent Gaussian background noise. 

It turns out that a signal-dependent quantum noise produced by the receiver processing 

may actually be the strongest additive noise source at optical frequencies. We can 

evaluate e r r o r  bounds including quantum noise effects for  receivers that have high- 

gain input amplifiers and for heterodyne detectors that use a strong local oscillator. We 

suggest that the present investigation of communication systems analysis, including 

quantum measurement noise, be extended to study optimum receivers for  spatially 

modulated signals. 

The analysis can also be extended by including atmospheric turbulence in the channel 

model. Unless the wave-front distortions caused by turbulence can be tracked and 

estimated precisely, there appears to be no possibility of separating orthogonal signal 

modes at the receiver except by forming nonoverlapping radiation patterns. It would be 

advantageous to know how the number of useful spatial modes diminishes because of 

turbulent scattering of signal energy outside of transmitted beams. John H. Richters' 

analysis of time- and bandwidth-limited signalling over a dispersive channel may be 

useful in evaluating receiver performance in this case. 64 The results can be applied to 

study image degradation caused by turbulence. The principal goal would be to get 

quantitative estimates for these effects. 

We think that it would be interesting and useful to conduct an experimental program 

on the variation of visual acuity with source illumination. The goal would be to compare 

visual acuity with the performance level of the analogous function for  an optimum image 

processor. Toward this end, the experiment should include a measurement of back- 

ground illumination noise. For  ease in interpreting results, the acuity task should be 

directly comparable to electronic circuit functions; for example, one should measure 

the spatial frequency response of the eye-brain system with a variable frequency sinus- 

oidally modulated acuity grating. Furthermore, the results should be corrected for 

variation of pupil width with the incident illumination. 



APPENDIX A 

Electromagnetic Field Solutions 

A. 1 ELECTROMAGNETIC FLELD OF A PLANAR CURRENT 

DISTRIBUTION 

We shall treat,  f i rs t ,  the electromagnetic field excited by a current  sheet ac ros s  a 

finite aperture.  We assume that the sheet is thin compared with a wavelength, and that 

the current  is directed along the x-axis ( s ee  Fig. A-1 ). 

modulator i- 
Fig. A-1. Source current  distribution ac ros s  the transmitting antenna. 

Let us begin with Maxwell's equations in f ree  space, written in rectangular 

coordinates. This presentation follows the discussion in Stratton. 
12 

4 

.-L dH V X E = - p -  dt 
v . G = o  

-.L A A 

where E, H, and P a r e  vector functions of position and time, and the current  and charge 
d 

densities a r e  expressed in t e rms  of the polarization vector P, defined by 

A 

Maxwell's equations have solutions in t e rms  of the vector r ,  



-J. 

where l~ is a solution of 

(A. 1 ) 

A 

Now since the current  source J is directed along the x direction, Eq. A. 1 reduces 

to  the sca la r  form 

(A. 2) 

This equation for  nx in t e r m s  of i t s  source distribution Px can be solved by use of 

Kirchhoff integration,12 to yield 

nx(xl, y', Z', t )  4 l ~  E ,.. dV, (A. 3 )  

sources A 

where the integration is over the source distribution and 

Equation A. 3 is the basic resul t  f rom which we can compute a l l  required field solutions, 

Fo r  example, 

sources 

- -  - 1 v x  
4lT r sources 

where the operator, V, is computed a t  the point of observation. We can also write the 

field solutions in t e rms  of steady-state quantities, that is, the Fourier  t ransform on the 

time variable. We have 

t i w  
4- 

- r 
4 1 r ~ ( u ,  w) e d~ 

sources I 

(A. 4a) 
sources 



(A. 4b) 

sources 

It is convenient to expand the vector operations in spherical coordinates (r, 8, +) a s  

illustrated in Fig. 3. The result  of performing the operations indicated in (A. 4) is 

- 4 k2 A t i k r  1 1 H(p, w) =-sin 0 i  + t --) dV 
4 .rr 

source 
( ( ikr )  

4 4 -ikr 1 

+ (*) cOs 

dV 

sources 

-ikr 1 t - 1 
t -) 1 sin 01 dV. 

sources ( (ikr)' ( ik r )  

(A. 5a) 

(A. 5b) 

A. 2 ELECTROMAGNETIC FIELD DIFFRACTED BY AN APERTURE 

The problem is to determine the amplitude distribution of the diffracted field in the 

space behind an aperture.  Let U(Po) be the amplitude a t  an  a rb i t ra ry  point behind the 

aperture,  and U(P1) be the amplitude in the aperture plane. We compute the steady- 

s ta te  amplitude of a monochromatic field 

2 
where in f ree  space u(;) satisfies the sca la r  wave equation (++k ) u(;) = 0. The anal- 

ysis  proceeds from Green's theorem, which s tates  

[ G ( ~ ) v ~ u ( ~ - u ( ~ ) v ~ G ( ~ ]  dV = [G(~)vu(;)-u(~)vG(;)] . n ds, 

where S is the surface enclosing a volume; n is the outward unit normal a t  each point 
-L -L 

on S; U(r )  and G(r )  a r e  any two complex-valued functions of position which together with 

their f i r s t  and second partial  derivatives a r e  single-valued and continuous within V and 

on S. 6 0 

The apparent utility of Green's theorem depends on the proper choice of the func- 

tion G. F i rs t ,  choose G s o  that it too satisfies the wave equation 

It follows that 



independently of the volume V'. Therefore, 

[G(;)vu(;)-u(~)vG(;)] . n dS = 0 ,  

where S' is the surface enclosing the volume V'. It can be shown that V' and G can be 

selected s o  that the field a t  any point in the interior of V is given by 

1 au uac 
U ( P  0 ) = q, J"' (= c+ - =) 

Now consider the geometry illustrated in Fig. A-2. Let S = S1 t S2, and choose G to 

vanish on S1. 

Also, on S1 

aG(P1 ) e 
= 2 cos  ( z  rol)  [ik an '01 0 1 

Source of same 
frequenci, but 1 80° 
out of p ase 

\ 
\ 
\ Spherical cap, 
\ S2 
\ 

source 
Aperature 

C + e i k r O 1  ik/Fol - e G(P,) = - -----. - 
'0 1 '0 1 

Fig. A- 2. Green' s function for  Rayleigh- Sommerfeld integration of the wave function. 



It is  possible to show that the contribution of the integral over S vanishes for potentials, 
2 

TJ, that vanish a s  fast a s  a diverging spherical wave. This condition is satisfied in prac- 

tice because we can represent the illumination across the aperture by a linear combina- 

tion of spherical waves. The net result of these arguments is that 

Finally, we invoke the Kirchhoff approximation: U ( P 1 )  = 0 in the immediate shadow of 

the aperture, and is unchanged in the aperture, Z. Therefore 

A A 

Let us  f i rs t  compare Eqs. A. 5 and A. 7. Note that cos (n, rO1) = sin 8. Except for 

the factor 1/2, U(Po) has the same form a s  the magnetic field H(Po). The factor 1/2 

a r i ses  because U(P ) is a complex envelope, having twice the amplitude of H These- 
0 +* 

fore, to the extent that the Kirchhoff approximation is valid, our results  will be identical 

whether we use the picture of elementary sources distributed across the transmitting 

aperture or  the picture of the aperture diffracting an incident source wave. 



APPENDIX B 

P r o ~ e r t i e s  of Prolate S~he ro ida l  Wave Functions 

It is known that the sca la r  wave equation 

is separable in spheroidal coordinates (5 ,  q, +). Prolate spheroidal coordinates a r e  

formed by rotating the two-dimensional elliptical coordinate system of confocal ellipses 

and hyperbolas around the Z-axis, a s  illustrated in Fig. B- 1. l9  The coordinates (5, q, +) 

a r e  related t o  rectangular coordinates by the transformation 

y = d 2 [( 1-q2)(p2+ 1)11/2 s in + 

where d is the interfocal distance, and 

The component of W that ca r r i e s  the q dependence is usually called S (C, q), and mn 
satisfies the following differential equation. 

where 

For  special values of Xmn, Eq. B. 2 has a rea l  continuous solution, Smn(q), that i s  

bounded and unique to within an a rb i t ra ry  constant. We a r e  particularly interested in 

the functions of zero order ,  namely Son(C, q). 

It can be shown that the S a r e  the eigenfunctions of the finite Fourier transform 
on 

operator; that i s ,  they satisfy the integral equation 



z 

'I= 1 
'I = cos I412 

Fig. B- 1. Prolate spheroidal coordinate system. 



and also its first  iterate 

0 1 sin C(t-q) 

PnSon(t) " j - I n(t-q) SOn(q) dq2 

with 

We summarize some useful properties of the functions S (C, t ) .  
17- 19 

on 
1. They a re  continuous in the interval -1 4 t G 1, and real  for all real t .  

2. They may be extended to entire functions of the complex variable t. 

3. They a re  continuous functions of C for C 3 0. 

4. They a re  orthogonal in the interval -1 G t G 1 and complete in the class of square 

integrable functions on that interval. 

5. They a r e  orthogonal in the interval -m 4 t 4 m, and complete over the class of 

bandlimited functions on that interval. 

6. They have exactly n zeros in -1 G t 4 1. 

7 .  They reduce uniformly t o  the Legendre polynomials, Pn(t) ,  in - 1 t G 1 as  C - 0. 

8. They have been normalized by Flamrner, l9  and by Stratton and chu18 such that 

SOn(C9 0) = Pn(0) n even 

Sbn(C, 0) = Pfi(0) n odd. 

B. 1 REPRESENTATION O F  BANDLIMITED FUNCTIONS 

In a series  of articles, Landau and Pollak, 297 43 and Slepian and ~ o l l a k "  have inves- 

tigated the special properties of the prolate spheroidal functions with special emphasis 
10. on the representation of signals. One of their fundamental theorems states . 

"Given any T > 0 and any !2 > 0, we can find a countably infinite set of real 
functions +o(t), +l  (t), . . . , and a set of rea l  positive numbers Po, PI,  P, . . . , 
with the following properties 

i .  The +i(t) a re  bandlimited, orthonormal on the real  line and complete in 

B (the class of functions which a r e  integrable in absolute square, and whose 
Fourier transforms vanish for frequencies higher than !2 = 2.rr W) 

T ii. In the interval 1 t 1 s - the Ci(t) a r e  orthogonal and complete in the 
2 ' T class of functions that a r e  integrable in absolute square in the interval 1 t ( 4 T .  



iii. For  all  values of t ,  r ea l  o r  complex, 

T/2 s in R(t-s) 
+ i ( ~ )  ds  i = 0, 1, 2 , .  . ." 

-T/Z ~ ( t - S )  

Clearly, the +Is and the p t s  a r e  functions of the product RT/2, which corresponds 

t o  the parameter C in Eq. B. 3. The 4's a r e  orthonormal on the infinite interval and 

a r e  complete for representing bandlimited functions having finite energy. That portion 

of the + I s  on the interval It I -( T/2 i s  an orthogonal se t  that is complete for representing 

time-limited functions having finite energy. When +. i s  time-limited, the amount of 
1 

energy remaining is P.. If this time-limited function is filtered t o  pass only frequencies 
1 

l ess  than R, we obtain a se t  of bandlimited orthogonal functions on the infinite time inter- 
2 

val having energy p. .  Each successive time-limiting and bandlimiting operation reduces 
1 

the signal energy by a factor of Pi. The bandlimited function that loses the Peast portion 

of i ts  energy upon being time-limited is +o(t), and the time-limited function that loses 

the least portion of i ts  energy upon being bandlimited i s  the restriction of +o(t) t o  

It I c T/Z. Furthermore, +ntl(t)  loses  the least energy by these limiting operations 

among the class  of functions that a r e  orthogonal t o  the f i rs t  n + I s .  

We have observed that the spheroidal wave functions a r e  eigenfunctions of the finite 

Fourier transform. The formal statement of this relation i s  given by 

T/ 2 -jut ST/z i n ( t )  e dt = j -n @+ R n (-) 2R for a l l  a. 

B. 2 FUNCTIONAL DEPENDENCE OF THE +n(t) 

Slepian has published the most complete and detailed expressions for the variation 

of +,(t) with t for large values of C. These expressions a r e  quite complicated, espe- 

cially because many different ranges of parameters  must be treated separately. We 

present here  his result  for + ( t )  valid for large C and for large values of n. n 



Here 

(1) fn ( t )  = Re 

CO CO 

~k NJ .Itr;c j=1 k= l  -+I) ( l t t )  (1-tlk 

( 3 )  - 1 (1) fn ( t )  - fn ( t )  except that n t 1 replaces n in the 
complex exponential. 

Also, +(a, C;t) is the confluent hypergeometric function; 

and 

j 

j The quantities M;, N;, L;, Kk a r e  polynomials in 6. 

Finally, 6 i s  a particular solution of 

i+o( 6) l t i d  
~ ~ ( 6 )  e = F ( ~ ) .  

We shall look more closely at solutions for 6 in connection with computing asymptotic 

expressions for the eigenvalues. 

Observe that for large values of C, +n(t) i s  given by f( ')(t)  [or by a suitable 
n 



modification of f ( l ) ( t ) ]  over all  but a vanishingly small  region of t in the vicinity of n 
t ; 1. This suggests that the lead t e r m  in f y ) ( t )  be adopted a s  a useful approximation 

for numerical computations. 

B. 3 EIGENVALUES OF PROLATE SPHEROIDAL WAVE FUNCTIONS 

The prolate spheroidal wave functions satisfy the following equation 

T/ 2 2TrW(t - s) 
pi +i ( t )  = 1 + i ( ~ )  s in  ds. 

- ~ / 2  ~ r ( t  - S) 

It can be shown that 

T/ 2 
Pi = J +;el dt, 

-T/Z 

and 

CO 
sin 2~rW(t - S) 

~ ( t  -s) j=O 

Therefore,  setting s = t ,  and integrating Eq. B. 7 over t for It I G T/Z,  we find 

Therefore 

We can also get an estimate for the sum of p2 a s  follows: 
1' 

T/2 
CO f = dtds s in 

27rW(t - S )  1 Ci(t) Ci(s) 
i = o  T/2 ~ ( t - s )  i = O  

EB. 7 )  



The following asymptotic expression, valid for large C, is given by Landau and 
29 Pollak : 

l log C t 0(1), 
n 2 

i= 0 

and also the following lower bound which is t rue for a l l  C, 

2 
Since 0 -C Pi G 1, it follows that for  large C the first;  C of the {pJ a r e  approximately 1, 

and the remainder a r e  approximately zero. This variation of Pi with C is illustrated in 

Fig. 4. 

It is convenient t o  have analytical expressions for the functional dependence of the 

pn on n and C. The following resul ts  a r e  taken from Slepian. l7 F o r  small  values of C, 

while for fixed n, and large values of C (large compared with n and unity) 

Of more immediate application to our research is the following approximation, valid 

when both n and C a r e  large. 

(B. 10) 

where 6 is the root of the smallest  absolute value of 



(B. 11) 

Now (Po(6) is the phase of the complex quantity ?? -( l t i 6 )  . [:. I 
The modulus and phase of the complex gamma function ??(l+iy) has been well tabulated. 

6 1 

Let e ( l t i 6 )  be the phase angle of r ( l t i 6 ) ;  %(6)  can be computed from the phase t e rms  

a s  follows. 

Figure B-2 is a sketch of +0(6). The root of Eq. B. 11 is computed graphically for each 
n r  IT - - with the curve n, a s  the intersection of the straight line, y = 6 log 2 f i  t C - 

y = (Po(6). There is always at least one root of this system of equations. 

It turns out that there a r e  ancillary conditions, arising from the details of the approx- 

imation procedure, which must a lso be satisfied to  get the correct  value of 6. l7  For  

this  reason, an extra  factor of 21~q should be included on the right-hand side 

C = Prolate Spheroidal Function Parameter 

6 =the root of the equation 

Fig. B-2. Graphical computation of 6. 



of (B. 11). (q i s  an a rb i t ra ry  integer that is adjusted in the approximation process.) In 

most interesting cases  we can ignore this factor. - 
6 Fo r  large values of 6 1 ,  ( 6  is asymptotically - In / 6 1/2e. Analysis of (B. 11) i s  2 2 '  

simplified by this approximation. The result  i s  that we can se t  6 = -IT (n -; ~ ) / l n  4C, 

and 

1 

which i s  the form used in Section 111, with D = $ C. 

B. 4 GENERALIZATIONS OF THE PROLATE SPHEROIDAL 

WAVE FUNCTIONS 

The prolate spheroidal wave functions a r e  defined along a line in a one-dimensional 

space. Their extensive utility has prompted analysis to  look for analogous functions 

defined on more  general regions of space. slepian16 has discussed one formulation of 

the general problem. That i s ,  let be a vector in a region R of Euclidean space. Let 

S be a region in the corresponding Fourier t ransform space, and let 7 be a vector in 

S. If R i s  symmetric and S is a scaled version of R, the analog of (B. 3) i s  

A 

iCx-  y 
+(?I dy for ;; in R. (B. 12) 

Equation B. 12 separates  into a product of one-dimensional prolate spheroidal wave equa- 

tions over rectangular regions. ~ l e ~ i a n "  has a l so  solved the equation for 2-dimensional 

c ircular  geometry. He shows that the solutions a r e  eigenfunctions of 

where J ( ) is the Bessel function of order  N. Furthermore, +(x) is also the solution 
N 

of a differential equation that is a generalization of (B. 2). 

Both numerical and analytical details of the solution a r e  available in his paper. Addi- 

tional computations a r e  available in papers by Huertly. 629 63 At the present time, I am 

not aware of work on other geometric systems that has been carried out t o  a point that 

is convenient for either analysis o r  computation. 



APPENDIX C 

Computation of Rate -Reliability Curves 

We shall evaluate bounds on the probability of e r r o r  for communication over parallel 

channels. By parallel channels we mean a communication system o r  model in which the 

distortion introduced by each channel is independent of the signal and the distortion in 

all other  channel^.^ In particular, we consider the case of orthogonal signal channels 

and independent additive noise sources. 

The basic bound is in the form 

where E(p, No, S, R) is called the "reliability." When it  is presented as  a function of the 

rate R (R is the rate at which information is produced by the source), i t  is called the 

rate-reliability curve." If the source puts out one of M equally likely messages every 

T sec, R = In M,  measured in nats/channel use. S is the signal energy available in the 

T-sec interval. S = TP, where P is the average power produced by the source. Nb is 

the largest variance of the noises on the subchannels that a re  used for signaling. Nb is 

computed a s  the first step in the process of computing the exponent E(p, Nb, S, R). 

The rate-reliability curve is computed from the following sequence of operations. 

First ,  for arbi trary values of the parameter p, compute Nb a s  a function of S and p 

from 

where the subchannels a r e  ordered in te rms of increasing noise variance, Ni G Nitl. 

Equation C.  1 has a unique solution for each S, p ,  This solution also defines the number 

of subchannels into which signal energy is put. For, if Qn is the average signal energy 

used on the nth subchannel, 

Qn = ( I+P)  
2 Nb - Ni for N~ G N~ 

N, 

= 0 for Ni > Nb. (C. 2 )  

Having computed Nb, the effective rate at which one transmits information, using the 

signal energy distribution defined above, is R(p, Nb), where 



Now p is a positive parameter that can be adjusted to maximize the exponent E. It 

turns out that there a re  two regions of interest. It is optimum to set p = 1 for all rates  

less  than R(1, Nb) . In that case, we find 

for 0 < R 4 R ( l ,  Nb), where Nb is computed for p = 1. 

For higher rates,  the optimization requires 0 G p < 1, and it  can be shown that E 

i s  positive only i f  R G R(0, N ~ )  .9 In this region we have 

for R(1, Nb) G R G R(0, Nb). The canonic form of rate-reliability curve is illustrated 

in Fig. 10. Let us proceed to compute these functions for the parallel-channel model 

developed in Section 111. 

C. 1 COMPUTATION OF Nb 

The noise variance in the ith subchannel is Ni, where from section 3.3a 

Nb is computed from (C. l ) ,  with Ni given by (C. 6) 

Define a new parameter 

Nb 1 a (ib-D) 
- =  l t e  =%= pb I 

which in effect defines ib, the number of subchannels selected by the optimization pro- 

cedure. Equation C. 7 is difficult to handle a s  a sum, but we can approximate the sum 



over the index i by an integral. This same approximation was used to bound Z P. in 
1 

Eq. 38. Then, we find 

For ib > D we integrate in (C. 9) over two separate regions, that is, over 0 G i G D, and 

D G i G ib. 

Now, 

and 

e PD S epx dx du 1 - In (atbu) 
0 a + b ePX =isl -= pb 

The computation of the integrals in (C. 10) leads to 

which simplifies to 

It can be shown that (C. 11) is valid for all values of i including ib < D. Let us further 
-aD b' 

simplify (C. 11) by asserting that e is negligible in the logarithmic argument. We 



regroup the expression as  

(C. 12) 

Now look at solutions for (C. 12) in the limit of small p; and observe that, for p 4 0, 

the optimum signaling rate approaches the channel capacity. We find 

(C. 13) 

where the term l /a is negligible compared with ib. Observe that 

(Eb-1) 
Therefore, when p - is approximately . 5  o r  less, we can expand the logarithmic 

Eb 
term as follows: 

so that (C. 12) becomes 

(C. 14) 

Therefore Eq. C. 13 is a special case of Eq. C. 14. If the signal-to-noise ratio is large, 

so that ib > D, then ib w i l l  be large compared with unity, and ( E ~ - I ) / E ~  approaches 1. 

In that case, for small p, (C . 14) becomes 

Also, for p very small, (C. 14) becomes 

Therefore the solutions to (C. 13) can be modified to obtain solutions of (C. 12) for sev- 

eral  useful limiting cases by scaling the signal energy. Equation C. 13 can be written 



where t = a i  b' 
For  large values of t ,  an asymptotically correct solution for t is 

t = In u - In [lnu], 

where 

aD u = 2s a/No e . 

We can rewrite the solution a s  

(G.  15b) 

These solutions a r e  good to better than a few percent for u > 15. When the signal-to- 

noise ratio becomes very small, then the solution becomes approximately t = u, 

which goes to zero linearly with the signal-to-noise ratio, a s  expected. This i s  expected 

because pi varies linearly with i ,  for small values of i. 

C. 2 COMPUTATION OF R(p, Nb) 

Each value of p specifies an Nb which defines the upper limit in the expression for 

the rate R(p ,  Nb) . We recall that 

(C. 1 6 )  

Now consider, again, the two possibilities, ib S D, and ib > D. If ib G D, then the sum 

reduces to 



This t e rm is negligible compared with 

1 hence, R =-(i t1 )  In eb. 2 b  

2s 2s 
In 1 + (C. 17) 

~ ~ ~ ( l t i l n ~ ) '  

For  ib 2 D, we have approximately 

Again approximate the logarithmic te rms,  this t ime assuming 1 + eai r 1. 

From Eq. C. 15a, we have 

Substituting (C. 18) in (C. 16) we get 

C. 3 COMPUTATION OF E(0) 

The exponent for zero rate  is computed from the value of Nb for p = 1. 



(C. 20)  

For ib 6 D, the arguments in each term of the logarithmic sum can be expanded as 

Therefore, to first order 

For ib 2 D, we break up the sum in (C. 20) into three terms 

Therefore 

Now, combine similar terms and neglect small quantities. We find 

(C. 2 2 )  

Substituting (C. 22) in (C. 20), we find 



a (ib-D) 
Now, with ib > D, we can set  In = a(ib-D) . Therefore 

Finally, substituting for  ib, we find 
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The transmission of digital information by means of electromagnetic wave propa- 
gation between terminals is reconsidered in order to understand the influence of the 
radiation channel, including the terminal antennas, on the quality of communication 
that can be maintained. In particular, we investigate the potential to improve perfor- 
mance by modulating the messages onto a set of spatially varying patterns across the 
source antenna. 

We show that the radiation channel can be modeled by the parallel combination of 
independent spatially and temporally modulated subchannels when the background noise 
at the receiver has Gaussian statistics and is uncorrelated at points separated by more 
than a few wavelengths of the carrier  frequency. Error  bounds a re  evaluated for digi- 
tal  transmission with optimum distribution of signal power to the subchannels, These 
bounds a re  used to interpret the significance of the signal and channel parameters and 
the interplay among them. 

The principal conclusion is that spatial modes have the same function as time- 
variant signal modes. They can be viewed as  independent subchannels that extend the 
effective bandwidth of the communication link. The number of effective spatial modes 
depends on the dimension of the terminal antennas and on the input signal-to-noise 
ratio. For a significant application of this modulation technique, the receiving antenna 
must be large enough to register simultaneous spatial variations in the incident elec- 
tromagnetic fields. 
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